4 resultados para MINERALIZATION
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The generation of wastes in most industrial process is inevitable. In the petroleum industry, one of the greatest problems for the environment is the huge amount of produced water generated in the oil fields. This wastewater is a complex mixture and present great amounts. These effluents can be hazardous to the environmental without adequate treatment. This research is focused in the analysis of the efficiencies of the flotation and photo-oxidation processes to remove and decompose the organic compounds present in the produced water. A series of surfactants derivated from the laurilic alcohol was utilized in the flotation to promote the separation. The experiments have been performed with a synthetic wastewater, carefully prepared with xylene. The experimental data obtained using flotation presented a first order kinetic, identified by the quality of the linear data fitting. The best conditions were found at 0.029 g.L-1 for the surfactant EO 7, 0.05 g.L-1 for EO 8, 0.07 g.L-1 for EO 9, 0.045 g.L-1 for EO 10 and 0.08 g.L-1 for EO 23 with the following estimated kinetic constants: 0.1765, 0.1325, 0.1210, 0.1531 and 0.1699 min-1, respectively. For the series studied, the most suitable surfactant was the EO 7 due to the lower reagent onsumption, higher separation rate constant and higher removal efficiency of xylene in the aqueous phase (98%). Similarly to the flotation, the photo-Fenton process shows to be efficient for degradation of xylene and promoting the mineralization of the organic charge around 90% and 100% in 90 min
Resumo:
Availability of good quality water has been reduced vertiginously, over the last decade, in the world. In some regions, the water resources have high concentration of the dissolved salts, these characteristics of the water make it s use impossible. Water quality can be a limitation for irrigated agriculture, principally in regions of arid or semiarid climate where the water resources are generally saline and are exposed at high evaporation ratio. For that reason, precipitation of the salts occurs near the soil surface and those salts themselves cumulate in the vegetal tissue, reducing the soil fertility and crop production. The adoption of tolerant crop to the water salinity and soil salinity, adaptable to the climatic conditions is other emergent necessity. This work had the goal of studying the effects of four salinity levels of the irrigation water salinity and use of mulch, dried leaves of Forest mangrove (Acacia mangiumWilld), in cultivated soil with amaranth (Amaranthus cruentus, BRS Alegria variety), in greenhouse. It was utilized the transplant of plants to PVC columns, containing 30 kg of silty loam soil, 10 days after emerging, with space of 50 x 50 cm between lines. Treatments were composed by combination of four levels of salinity (0.147; 1.500; 3.000 e 4.500 dS m-1), obtained by addition NaCl (commercial) to irrigation water and soil with and without protection, by mulch. A factorial system 4 x 2 was used with four repetitions, totalizing 32 parcels. The concentrations of nutrients in soil solution have been evaluated, in the dry matter of the vegetal tissue (roots, stem, leaves and raceme residue), at the end of the vegetative cycle. The use of soil protection reduced time for the beginning inflorescence of plants, at the same time, the increase of the salinity delayed this phase of amaranth development. The use of the mulch effectively increased the height, stem diameter, area of the larger leaf, humidity and dry matter content and amaranth grain production. The vegetal species showed salinity tolerance to experimented levels. The adopted treatments did not affect the pH values, exchangeable cation contents, electrical conductivity of soil solution (EC1:5) and saturated extract (ECSE), and Ca+2, Mg+, Fe+2 and Mn+2 contents, in the soil solution. The increase of the salinity concentration in the irrigation water inhibited the mineralization process of the organic matter (OM) and, consequently, the efficiency in the it´s utilization by plants, at the same time, produced increase in the values of the exchangeable sodium percentage (ESP), sodium adsorption ratio (SAR) and potassium adsorption ratio (PAR), in the soil solution. Therefore, the use of the mulch did not affect the first three parameters. The protein and nutrient contents: K+, Ca+2, P, Mg+2 e Cu+2, in amaranth grains, were improved by tillage condition. The raceme residues showed chemical/nutritional composition that makes advantageous its application in animal ration. In this context, it follows that amaranth tolerate the saline stress, of the irrigation water, until 4.500 dS m-1, temperature and relative humidity of the air predominant in the experimental environment
Resumo:
The generation of wastes in most industrial process is inevitable. In the petroleum industry, one of the greatest problems for the environment is the huge amount of produced water generated in the oil fields. This wastewater is a complex mixture and present great amounts. These effluents can be hazardous to the environmental without adequate treatment. This research is focused in the analysis of the efficiencies of the flotation and photo-oxidation processes to remove and decompose the organic compounds present in the produced water. A series of surfactants derivated from the laurilic alcohol was utilized in the flotation to promote the separation. The experiments have been performed with a synthetic wastewater, carefully prepared with xylene. The experimental data obtained using flotation presented a first order kinetic, identified by the quality of the linear data fitting. The best conditions were found at 0.029 g.L-1 for the surfactant EO 7, 0.05 g.L-1 for EO 8, 0.07 g.L-1 for EO 9, 0.045 g.L-1 for EO 10 and 0.08 g.L-1 for EO 23 with the following estimated kinetic constants: 0.1765, 0.1325, 0.1210, 0.1531 and 0.1699 min-1, respectively. For the series studied, the most suitablesurfactant was the EO 7 due to the lower reagent consumption, higher separation rate constant and higher removal efficiency of xylene in the aqueous phase (98%). Similarly to the flotation, the photo-Fenton process shows to be efficient for degradation of xylene and promoting the mineralization of the organic charge around 90% and 100% in 90 min
Resumo:
Great part of the gold mineralizations are associated with shearing zones through which circulate a great volume of fluids, that interact with the host rocks, originating leaching or precipitation of chemical elements, including gold. The studied mineralizations are inserted in the Seridó Belt. The tungsten mineralization in Brejuí Mine is hosted in calcsilicate rocks from Jucurutu Formation. The São Francisco auriferous mineralization has as host rocks mica-schists from Seridó Formation, while the Ponta da Serra and Fazenda Simpático mineralizations are hosted in orthogneisses of this fold belt basement. The research conducted on these mineralizations had the purpose of integrate the data of chemical elements behavior during the shearing/mineralizing event, and its influence on the isotopic systems Rb-Sr and Sm-Nd. The studies of chemical mobility in the auriferous mineralizations showed that elements that during the shearing displayed in general an immobile behavior were Al, Ti and Zr. Among the elements that were mobilized during the event, K and Rb showed mass gain in ali belts of transformed rocks, while the elements Ca, Na and Sr normally lost mass. Petrographic studies showed that the minerais biotite and plagioclase, in all investigated mineralizations, played an important role in the chemical reactions occurred in the transformed rocks to the generation of muscovite, cordierite and sillimanite, justifying the input of K to the formation of muscovite, and the release of Na and Ca from plagioclase to the fluid phase. In the São Francisco auriferous mineralization, the results of the Rb-Sr isotopic analysis yielded ages of 645 ± 19 Ma and 596 ± 17 Ma, with both samples, from original and transformed rocks. Two ages, 569 ± 20 Ma. and 554 ± 19 Ma., were obtained with samples frem the transformed rocks domain. These ages suggest that there were two metamorphic pulses during the emplacement of the mineralized shearing zone. The Sm-Nd data yielded TDM ages of 1,31 Ga and 1,26 Ga with 3Nd (0,6 Ga) of -0,26 e -0,40 for the original and final transformed rocks, respectively. In case of the orthogneisses of Caicó Complex, e.g. the Ponta da Serra and Fazenda Simpático mineralizations, the Rb-Sr data did not yield ages with geological significance. In the Ponta da Serra mineralization, the Sm-Nd isotopic data yielded T DM ages of 2,56 Ga and 2,63 Ga to the original rocks and of 2,71 Ga to the mineralized sheared rock, and values of 3Nd (2,0 Ga) between -3,70 e -5,42 to the original and sheared rock, respectively. In the Fazenda Simpático, Sm-Nd data yielded TDM between 2,65 and 2,69 Ga with values of 3Nd (2,0 Ga) between -5,25 e -5,52. Considering the Sm-Nd data, the TDM ages may be admitted as the age of the parental magma extraction, producer of the protoliths of the orthogneisses from Ponta da Serra and Fazenda Simpático mineralizations. The chemical mobility studies showed that in the basement hosted mineralizations, Rb achieved mass while Sr lost mass, as Sm as well as Nd were strongly mobilized. The Sm/Nd ratio remained constant, however, confirming the isochemical character of those elements. In the basement mineralizations, Rb-Sr ages are destituted of geological significance, because of the partial opening of the isotopic system during the tectono-metamorphic transformations. In the tungsten mineralization, the diagram Sm-Nd constructed with the whole-rock data of calcsilicatic and the high-temperature paragenesis (garnet, diopside and iron-pargasitic hornblende) indicated an 631 ± 24 Ma age, while with the whole-rock data and low-temperature paragenesis (vesuvianite, epidote and calcite), a 537 ± 107 Ma age was obtained. These ages, associated with the petrographic observations, suggest that there was a time gap among the hydrothernal events responsible by the formation of the high and low temperature paragenesis in the calcsilicatic rocks mineralized in scheelite