2 resultados para MICROCRYSTALS
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Pyrometamorphism results from conditions of high temperatures and very low pressures provoked by the intrusion of hypabyssal basic bodies into sedimentary or metassedimentary hosting rocks. The onshore portion of the Potiguar Basin in NE Brazil offers examples of this type of metamorphism nearby the contacts of Paleogene to Neogene plugs, sills and dikes of diabases and basalts crosscutting sandstones, siltstones and shales of the Açu Formation (Albian-Cenomanian). The thermal effects over these rocks are reflected on textures and minerals assemblages that characterize the sanidinite facies of metamorphism, often with partial melting of the feldspathic and mica-rich matrix. The liquid formed is potassic and peraluminous, with variably colored rhyolitic glass (colorless, yellow, brown) comprising microcrystals of tridymite, sanidine and clinoenstatite, besides residual detrital clasts of quartz and rarely zircon, staurolite and garnet. Lenses of shale intercalated within the sandstones display crystallites of Fe-cordierite (sekaninaite), mullite, sanidine, armalcolite (Fe-Ti oxide) and brown spinel. The rocks formed due to the thermal effect of the intrusions are called buchites for which two types are herein described: a light one derived from feldspathic sandstone and siltstone protoliths; and a dark one derived from black shale protoliths. Textures indicating partial melting and minerals such as sanidine, mullite, tridymite and armalcolite strongly demonstrate that during the intrusion of the basic bodies the temperature reached 1,000-1,150°C, and was followed by quenching. Cooling of the interstitial melts has as consequences the closure of pores and decrease of the permeability of the protolith, which varies from about 17-11% in the unaffected rocks to zero in the thermally modified types. Although observed only at contacts and over small distances, the number of basic intrusions hosted within the Potiguar Basin in both onshore and offshore portions leaves opened the possibility of important implications of the thermal effects over the hydrocarbon exploration in this area as well in other Cretaceous and Paleozoic basins in Brazil
Resumo:
This work has the main objective to obtain nano and microcrystals of cellulose, extracted from the pineapple leaf fibres (PALF), as reinforcement for the manufacture of biocomposite films with polymeric matrices of Poly(vinyl alcohol) (PVA) and Poly(lactic acid) (PLA). The polymer matrices and the nano and microcrystals of cellulose were characterised by means of TGA, FTIR and DSC. The analysis was performed on the pineapple leaves to identify the macro and micronutrients. The fibers of the leaves of the pineapple were extracted in a desfibradeira mechanical. The PALF extracted were washed to remove washable impurities and subsequently treated with sodium hydroxide (NaOH) and sodium hypochlorite (NaClO) in the removal of impurities, such as fat, grease, pectates, pectin and lignin. The processed PALF fibers were hydrolysed in sulfuric acid (H2SO4) at a concentration of 13.5 %, to obtain nano and microcrystals of cellulose. In the manufacture of biocomposite films, concentrations of cellulose, 0 %, 1 %, 3 %, 6 %, 9% and 12% were used as reinforcement to the matrices of PVA and PLA. The PVA was dissolved in distilled water at 80 ± 5 oC and the PLA was dissolved in dichloromethane at room temperature. The manufacture of biocompósitos in the form of films was carried out by "casting". Tests were carried out to study the water absorption by the films and mechanical test of resistance to traction according to ASTM D638-10 with a velocity of 50 mm/min.. Chi-square statistical test was used to check for the existence of significant differences in the level of 0.05: the lengths of the PALF, lengths of the nano and microcrystals of cellulose and the procedures used for the filtration using filter syringe of 0.2 μm or filtration and centrifugation. The hydrophilicity of biocompósitos was analysed by measuring the contact angle and the thickness of biocompósitos were compared as well as the results of tests of traction. Statistical T test - Student was also applied with the significance level (0.05). In biodegradation, Sturm test of standard D5209 was used. Nano and microcrystals of cellulose with lengths ranging from 7.33 nm to 186.17 nm were found. The PVA films showed average thicknesses of 0.153 μm and PLA 0.210 μm. There is a strong linear correlation directly proportional between the traction of the films of PVA and the concentration of cellulose in the films (composite) (0,7336), while the thickness of the film was correlated in 0.1404. Nano and microcrystals of cellulose and thickness together, correlated to 0.8740. While the correlation between the cellulose content and tensile strength was weak and inversely proportional (- 0,0057) and thickness in -0.2602, totaling -0,2659 in PLA films. This can be attributed to the nano and microcrystals of cellulose not fully adsorbed to the PLA matrix. In the comparison of the results of the traction of the two polymer matrices, the nano and microcrystals have helped in reducing the traction of the films (composite) of PLA. There was still the degradation of the film of PVA, within a period of 20 days, which was not seen in the PLA film, on the other hand, the observations made in the literature, the average time to start the degradation is above 60 days. What can be said that the films are biodegradable composites, with hydrophilicity and the nano and microcrystals of cellulose, contribute positively in the improvement of the results of polymer matrices used.