3 resultados para MAGMA EVOLUTION
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The study area is located at the eastern-central portion of the Seridó Belt, on the interface between the Seridó Group Metasediments and the crystalline basement rocks of the Caicó Complex (RN). Petrographic and geochemical data allow us to define aspects related to the genesis and evolution of the Serra Verde Pluton magmas, which composes the goal of this dissertation The Serra Verde Pluton is a stock with outcropping area of about 25 km², which is intrusive into metasedimentary sequence and the basement gneisses. The pluton intrusion is sintectonic to the Brasiliano event, elongated along the NE direction, developing a cornue geometry. The rock is a monzogranite mainly composed by K-feldspar, plagioclase and quartz, which usually compose more than 85% of the modal analisys. The main mafic mineral is the biotite, while amphibole, sphene, epidote, opaque minerals, allanite, zircon and apatite occur as accessory minerals. It features still a latemagmatic paragenesis composed by chlorite, granular epidote, carbonates and muscovite, developed through the percolation of late CO2 and H2O rich fluids. Chemically, the Serra Verde Pluton rocks may be classified as metaluminous, of calc-alkaline affiliation, sometimes showing trondhjemític characteristics, with high Na2O (>4,5%), Sr (>400ppm) and Ba (>800ppm) and low K2O (≤3,0%), MgO (<1,0%), TiO2 (<0,5%), Rb (<90ppm), Y (≤16ppm) and Zr (≤13ppm). Micropetrographic evidences (mineral assembly and microtextures) indicate that the magma evolution occurred in moderated to high fO2 conditions, above the FMQ buffer. Thermo-barometric data obtained by minor elements geochemistry and the CIPW data, suggest a final/minimal pressure crystallization for the Serra Verde Pluton samples of about 3 to 5 kbar, liquidus temperature around 800o C, solidus temperature between 680o and 660o C. This data is compatible with those observed by many authors for the Neoproterozoic granites of the Seridó Belt. The group of analyzed data (Petrographic, microtextural and geochemical), suggests that the dominant process of the generation and evolution of the Serra Verde Granite magma was the fractional crystallization, probably from basement quartz-dioritic and tonalitic orthogneisses source
Resumo:
The final stage of Brasiliano/Pan-African orogeny in the Borborema Province is marked by widespread plutonic magmatism. The Serra da Macambira Pluton is an example of such plutonism in Seridó Belt, northeastern Borborema Province, and it is here subject of geological, petrographic, textural, geochemical and petrogenetic studies. The pluton is located in the State of Rio Grande do Norte, intrusive into Paleoproterozoic orthogneisses of the Caicó Complex and Neoproterozoic metassupracrustal rocks of the Seridó Group. Based upon intrusion/inclusion field relationships, mineralogy and texture, the rocks are classified as follows: intermediate enclaves (quartz-bearing monzonite and biotite-bearing tonalite), porphyritic monzogranite, equigranular syenogranite to monzogranite, and late granite and pegmatite dykes. Porphyritic granites and quartz-bearing monzonites represent mingling formed by the injection of an intermediate magma into a granitic one, which had already started crystallization. Both rocks are slightly older than the equigranular granites. Quartz-bearing monzonite has K-feldspar, plagioclase, biotite, hornblende and few quartz, meanwhile biotite-bearing tonalite are rich in quartz, poor in K-feldspar and hornblende is absent. Porphyritic and equigranular granites display mainly biotite and rare hornblende, myrmekite and pertitic textures, and zoned plagioclase pointing out to the relevance of fractional crystallization during magma evolution. Such granites have Rare Earth Elements (REE) pattern with negative Eu anomaly and light REE enrichment when compared to heavy REE. They are slight metaluminous to slight peraluminous, following a high-K calc-alkaline path. Petrogenesis started with 27,5% partial melting of Paleoproterozoic continental crust, generating an acid hydrous liquid, leaving a granulitic residue with orthopyroxene, plagioclase (An40-50), K-feldspar, quartz, epidote, magnetite, ilmenite, apatite and zircon. The liquid evolved mainly by fractional crystallization (10-25%) of plagioclase (An20), biotite and hornblende during the first stages of magmatic evolution. Granitic dykes are hololeucocratic with granophyric texture, indicating hypabissal crystallization and REE patterns similar to A-Type granites. Preserved igneous textures, absence or weak imprint of ductile tectonics, association with mafic to intermediate enclaves and alignment of samples according to monzonitic (high-K calcalkaline) series all indicate post-collisional to post-orogenic complexes as described in the literature. Such interpretation is supported by trace element discrimination diagrams that place the Serra da Macambira pluton as late-orogenic, probably reflecting the vanishing stages of the exhumation and collapse of the Brasiliano/Pan-African orogen.
Resumo:
The Dissertation aimed to advance the geological knowledge of the Barcelona Granitic Pluton (BGP). This body is located in the eastern portion of the Rio Grande do Norte Domain (RND), within the São José do Campestre subdomain (SJC), NE of the Borborema Province. The main goal was to understand the geological evolution of the rocks of the pluton and the tectonic setting of magma generation and its emplacement. The BGP has an assumed Ediacaran age and outcropping area of approximately 260 km2, being composed of three varied petrographic/textural facies: (a) porphyritic biotite monzogranite; (b) dykes and sheets of biotite microgranite; (c) dioritic to quartz-dioritic enclaves. The rocks of the BGP have the following structures: (i) a NE-SW and NW-SE directed magmatic fabric (Sγ), accompanied by a magmatic lineation (Lγ) with gentle dip to NE-SW and NW-SE. In the southern portion, there is the concentric pattern of this foliation with medium to high dip, and (ii) a solid state foliation, in part mylonitic (S3+), mainly on the eastern edge with slightly plunging to west. The integration of structural and gravity data permitted to interpret the emplacement of the BGP as controlled by the transcurrent shear zones systems Lajes Pintadas (LPSZ) and Sítio Novo (SNSZ), both of dextral strike-slip kinematics. Mineral chemistry data show that the amphibole form the porphyritic biotite monzogranite facies is hastingsite with moderate Mg / (Mg + Fe) ratios, indicating crystallization under moderate to high ƒO2 and cristallization pressure of around 5.0-6.0 kbar. The biotite tends to be slightly richer in annite molecule and plots in the transitional field from primary biotite to reequilibrated biotite. In discriminant diagrams of magmatic series, the biotite behave like those of subalkaline affinity, consistent with the potassium calc-alkaline / sub-alkaline geochemical affinity of the hosting rock. The opaque minerals are primarily magnetite, with some crystals martitized to hematite indicating relatively oxidizing conditions during magma evolution that originated the BGP. Zoning in plagioclase, K-feldspar and allanite crystals suggest fractional crystallization process. Lithogeochemical data suggest that the facies described for the BGP have similar magma source, usually plotting in the fields and trends of the subalkaline / high potassium calc-alkaline series.