95 resultados para Método estruturado
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
SOARES, Lennedy C. ; MEDEIROS, Adelardo A. D. de ; PROTASIO, Alan D. D. ; BOLONHINI, Edson H. Sistema supervisório para o método de elevação plunger lift. In: CONGRESSO BRASILEIRO DE PESQUISA E DESENVOLVIMENTO EM PETRÓLEO E GÁS, 5., Fortaleza, CE, 2009. Anais...Fortaleza: CBPDPetro, 2009.
Resumo:
DAVIM, Rejane Marie Barbosa;ENDERS, Bertha Cruz; DANTAS, Janmilli da Costa; SILVA, Richardson Augusto Rosendo da; NÓBREGA, Edualeide Jeane Pereira Bulhões da. Método mãe-canguru: vivência de mães no alojamento conjunto. Revista da Rede de Enfermagem do Nordeste, Fortaleza, v. 10, n. 1, p. 37-44, jan./mar.2009.
Resumo:
CARVALHO, Andréa Vasconcelos ; ESTEBAN NAVARRO, Miguel Ángel. . Auditoria de Inteligência: um método para o diagnóstico de sistemas de inteligência competitiva e organizacional. In: XI ENANCIB - Encontro Nacional de Pesquisa em Ciência da Informação, 2010, Rio de Janeiro. Anais do XI ENANCIB. Rio de Janeiro: ANCIB, 2010.
Resumo:
A pesquisa aborda o uso das Tecnologias de Informação e Comunicação, que vem revolucionando as atividades e ocasionando muitas mudanças relacionadas ao acesso e uso de informações. O objetivo foi analisar o grau de utilização do conhecimento científico produzido pelos Programas de Pós-Graduação das Universidades Públicas Brasileiras, através da BDTD, pelos mestrandos dos referidos programas. Nos procedimentos metodológicos realizados, procurou-se inicialmente analisar o amplo espectro da população do corpus da pesquisa. Em razão da impossibilidade de trabalhar com os Programas de Pós-Graduação como um todo, optou-se por fazer um recorte, elegendo os cursos de Pós-Graduação em Ciência da Informação, vez que estes representam o principal segmento social de interesse da pesquisa. Foi utilizado o método de estudo de usuários, onde se optou por adotar o grupo, “estudos orientados aos usuários”, que identifica as necessidades e comportamento de acesso e uso da informação. Para coletar os dados, elaborou-se um questionário semi-estruturado com 25 questões, que versavam sobre o uso, dificuldades de acesso e recuperação da informação, bem como a satisfação na utilização dessa fonte informacional. Dentre os vários resultados obtidos, podemos destacar o fato de que a maioria dos mestrandos (71,8%) só teve contato com a BDTD somente no momento em que se encontrava cursando o mestrado e, somente 24,3%, tiveram contato durante a graduação. Estes resultados representam um problema, que pode afetar o bom desempenho do projeto BDTD, o qual consiste em disseminar e divulgar a produção científica dos Programas de Pós-Graduação das Universidades Públicas Brasileiras para a sua comunidade. Foi observado também, que os mestrandos oriundos do curso de Biblioteconomia tende a ter contato com a BDTD bem mais cedo do que mestrandos de outros cursos de graduação. A fim de minimizar o problema detectado, propõe-se uma divulgação mais eficaz na graduação através de dois procedimentos: Primeiro, o docente deve fazer uma divulgação mais eficaz da BDTD junto aos discentes de todos os cursos de graduação; segundo: deverá ser feita a divulgação na mídia eletrônica, através da inserção de ícones da BDTD, nos portais dos Departamentos dos Cursos de Graduação das Universidades Públicas Brasileiras. Acredita-se que com estes procedimentos seja possível aperfeiçoar o uso dessa fonte de informação científica.
Resumo:
This work has as its main purpose to investigate the contribution of supply chain management in order to obtain competitive advantage by companies from the textile industry and from Ceará footwear industry, focusing its analysis mainly in the interorganizational relations (dyadic). For this, the theoretical referential contemplates different explanatory streams of the competitive advantage, detaching the relational perception of the resources theory, as well as, the main presuppositions of the supply chain management which culminates with the development of an analysis sample that runs the empirical study; the one which considers an expanded purpose of the supply chain which includes the government and the abetment institutions as institutional environment representatives. Besides supply chain management consideration as a competitive advantage source, the work also tried to identify other possible competitive advantage sources for the companies of the investigated sectors. It represents a study of multiple interpretive cases, having four cases as a total; meaning two cases in each one of the sectors, which used as a primary data collecting instrument a semi-structured interview schedule. Different methods were used for the data analysis, the content analysis and the constant comparison methods, the analytical procedure originated from the grounded theory research strategy, which were applied the Atlas/ti software recourse. Considering the theoretical referential and the used analysis sample, four basic categories of the work were defined, including its respective proprieties and dimensions: (1) characteristics concerning to the relationship with the supplier; (2) the company relations with the government; (3) the company relations with the abetment institutions and; (4) obtaining sources of competitive advantage. In general, the applied research in the footwear sector revealed that in the relationships of the researched companies related to its suppliers, there is a predominance of the partnership system and the main presuppositions of the supply chain management are applied which contributes for the acquisition of the relational competitive advantage; while in the textile sector, only some of these presuppositions are applied, with little contribution for the relational competitive advantage. The main resource which was accessed by the companies in both sectors through its relationships with the government and the abetment institutions are the tax incentives which, for the footwear companies, contribute for the acquisition of the temporary competitive advantage in relation to the contestants who do not own productive installations in the Northeast region, it also conducts to a competitive parity situation in relation to the contestants who own productive installations in the Northeast region and to the external market contestants; while for the companies of the textile sector, the tax incentives run the companies to a competitive parity situation in relation to its contestants. Furthermore, the investigated companies from the two sectors possess acquisition sources of the competitive advantage which collimate with different explanatory streams (industrial analysis, resources theory, Austrian school and the dynamic capabilities theory), although there is a predominance of the product innovation as a competitive advantage source in both sectors, due to the bond of these with the fashion tendencies
Resumo:
The study aims to identify the factors that influence the behavior intention to adopt an academic Information System (SIE), in an environment of mandatory use, applied in the procurement process at the Federal University of Pará (UFPA). For this, it was used a model of innovation adoption and technology acceptance (TAM), focused in attitudes and intentions regarding the behavior intention. The research was conducted a quantitative survey, through survey in a sample of 96 administrative staff of the researched institution. For data analysis, it was used structural equation modeling (SEM), using the partial least squares method (Partial Least Square PLS-PM). As to results, the constructs attitude and subjective norms were confirmed as strong predictors of behavioral intention in a pre-adoption stage. Despite the use of SIE is required, the perceived voluntariness also predicts the behavior intention. Regarding attitude, classical variables of TAM, like as ease of use and perceived usefulness, appear as the main influence of attitude towards the system. It is hoped that the results of this study may provide subsidies for more efficient management of the process of implementing systems and information technologies, particularly in public universities
Resumo:
Nowadays, evaluation methods to measure thermal performance of buildings have been developed in order to improve thermal comfort in buildings and reduce the use of energy with active cooling and heating systems. However, in developed countries, the criteria used in rating systems to asses the thermal and energy performance of buildings have demonstrated some limitations when applied to naturally ventilated building in tropical climates. The present research has as its main objective to propose a method to evaluate the thermal performance of low-rise residential buildings in warm humid climates, through computational simulation. The method was developed in order to conceive a suitable rating system for the athermal performance assessment of such buildings using as criteria the indoor air temperature and a thermal comfort adaptive model. The research made use of the software VisualDOE 4.1 in two simulations runs of a base case modeled for two basic types of occupancies: living room and bedroom. In the first simulation run, sensitive analyses were made to identify the variables with the higher impact over the cases´ thermal performance. Besides that, the results also allowed the formulation of design recommendations to warm humid climates toward an improvement on the thermal performance of residential building in similar situations. The results of the second simulation run was used to identify the named Thermal Performance Spectrum (TPS) of both occupancies types, which reflect the variations on the thermal performance considering the local climate, building typology, chosen construction material and studied occupancies. This analysis generates an index named IDTR Thermal Performance Resultant Index, which was configured as a thermal performance rating system. It correlates the thermal performance with the number of hours that the indoor air temperature was on each of the six thermal comfort bands pre-defined that received weights to measure the discomfort intensity. The use of this rating system showed to be appropriated when used in one of the simulated cases, presenting advantages in relation to other evaluation methods and becoming a tool for the understanding of building thermal behavior
Resumo:
In this study barium hexaferrite was (general formulae BaFe12O19) was synthesized by the Pechini method under different conditions of heat treatment. Precursors like barium carbonate and iron nitrate were used. These magnetic ceramic, with magnetoplumbite type structure, are widely used as permanent magnet because of its excellent magnetic properties, such as: high Curie temperature, good magnetic anisotropy, high coercivity and corrosion resistance. The samples were characterized by thermal analysis (DTA and TG), X- ray Diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM) end Vibrating sample Magnetometer (VSM). The results confirm the expected phase, which was reinforced according to our analysis. A single phase powder at relatively high temperatures with particle sizes around 100 nm was obtained. The characteristic magnetic behavior one of the phases has been noted (probably superparamagnetic material), while another phase was identified as a ferrimagnetic material. The ferrimagnetic phase showed vortex configuration with two central and slightly inclined plateaus. In general, increase of heat treatment temperature and time, directly influenced the technological properties of the samples
Resumo:
The cerium oxide has a high potential for use in removing pollutants after combustion, removal of organic matter in waste water and the fuel-cell technology. The nickel oxide is an attractive material due to its excellent chemical stability and their optical properties, electrical and magnetic. In this work, CeO2-NiO- systems on molars reasons 1:1(I), 1:2(II) e 1:3(III) metal-citric acid were synthesized using the Pechini method. We used techniques of TG / DTG and ATD to monitor the degradation process of organic matter to the formation of the oxide. By thermogravimetric analysis and applying the dynamic method proposed by Coats-Redfern, it was possible to study the reactions of thermal decomposition in order to propose the possible mechanism by which the reaction takes place, as well as the determination of kinetic parameters as activation energy, Ea, pre-exponential factor and parameters of activation. It was observed that both variables exert a significant influence on the formation of complex polymeric precursor. The model that best fitted the experimental data in the dynamic mode was R3, which consists of nuclear growth, which formed the nuclei grow to a continuous reaction interface, it proposes a spherical symmetry (order 2 / 3). The values of enthalpy of activation of the system showed that the reaction in the state of transition is exothermic. The variables of composition, together with the variable temperature of calcination were studied by different techniques such as XRD, IV and SEM. Also a study was conducted microstructure by the Rietveld method, the calculation routine was developed to run the package program FullProf Suite, and analyzed by pseudo-Voigt function. It was found that the molar ratio of variable metal-citric acid in the system CeO2-NiO (I), (II), (III) has strong influence on the microstructural properties, size of crystallites and microstrain network, and can be used to control these properties
Resumo:
Continuous Synthesis by Solution Combustion was employed in this work aiming to obtain tin dioxide nanostructured. Basically, a precursor solution is prepared and then be atomized and sprayed into the flame, where its combustion occurs, leading to the formation of particles. This is a recent technique that shows an enormous potential in oxides deposition, mainly by the low cost of equipment and precursors employed. The tin dioxide (SnO2) nanostructured has been widely used in various applications, especially as gas sensors and varistors. In the case of sensors based on semiconducting ceramics, where surface reactions are responsible for the detection of gases, the importance of surface area and particle size is even greater. The preference for a nanostructured material is based on its significant increase in surface area compared to conventional microcrystalline powders and small particle size, which may benefit certain properties such as high electrical conductivity, high thermal stability, mechanical and chemical. In this work, were employed as precursor solution tin chloride dehydrate diluted in anhydrous ethyl alcohol. Were utilized molar ratio chloride/solvent of 0,75 with the purpose of investigate its influence in the microstructure of produced powder. The solution precursor flux was 3 mL/min. Analysis with X-ray diffraction appointed that a solution precursor with molar ratio chloride/solvent of 0,75 leads to crystalline powder with single phase and all peaks are attributed to phase SnO2. Parameters as distance from the flame with atomizer distance from the capture system with the pilot, molar ratio and solution flux doesn t affect the presence of tin dioxide in the produced powder. In the characterization of the obtained powder techniques were used as thermogravimetric (TGA) and thermodiferential analysis (DTA), particle size by laser diffraction (GDL), crystallographic analysis by X-ray diffraction (XRD), morphology by scanning electron microscopy (SEM), transmission electron microscopy (TEM), specific surface area (BET) and electrical conductivity analysis. The techniques used revealed that the SnO2 exhibits behavior of a semiconductor material, and a potentially promising material for application as varistor and sensor systems for gas
Resumo:
In the ceramics industry are becoming more predominantly inorganic nature pigments. Studies in this area allow you to develop pigments with more advanced properties and qualities to be used in the industrial context. Studies on synthesis and characterization of cobalt aluminate has been widely researched, cobalt aluminate behavior at different temperatures of calcinations, highlighting especially the temperatures of 700, 800 and 900° C that served as a basis in the development of this study, using the method of polymerization of complex (CPM), economic, and this method applied in ceramic pigment synthesis. The procedure was developed from a fractional factorial design 2 (5-2) in order to optimize the process of realization of the cobalt aluminate (CoAl2O4), having as response surfaces the batch analysis data of Uv-vis spectroscopy conducted from the statistic software 7.0, for this were chosen five factors as input variables: citric acid (stoichiometric manner), puff or pyrolysis time (h), temperature (° C), and calcinations (° C/min), at levels determined for this study. By applying statistics in the process of obtaining the CoAl2O4 is possible the study of these factors and which may have greater influence in getting the synthesis. The pigments characterized TG/DSC analyses, and x-ray diffraction (XRD) and scanning electron microscope (SEM/EDS) in order to establish the structural and morphological aspects of pigment CoAl2O4, among the factors studied it were found to statically with increasing calcinations temperature 700°< 800 <900 °C, the bands of Uv-vis decrease with increasing intensity of absorbance and that with increasing time of puff or pyrolysis (h) there is an increase in bands of Uv-vis proportionally, the generated model set for the conditions proposed in this study because the coefficient of determination can explain about 99.9% of the variance (R²), response surfaces generated were satisfactory, so it s possible applicability in the ceramics industry of pigments
Resumo:
The present work deals with the synthesis of materials with perovskite structure with the intention of using them as cathodes in fuel cells SOFC type. The perovskite type materials were obtained by chemical synthesis method, using gelatin as the substituent of citric acid and ethylene glycol, and polymerizing acting as chelating agent. The materials were characterized by X-ray diffraction, thermal analysis, spectroscopy Fourier transform infrared, scanning electron microscopy with EDS, surface area determination by the BET method and Term Reduction Program, TPR. The compounds were also characterized by electrical conductivity for the purpose of observing the possible application of this material as a cathode for fuel cells, solid oxide SOFC. The method using gelatin and polymerizing chelating agent for the preparation of materials with the perovskite structure allows the synthesis of crystalline materials and homogeneous. The results demonstrate that the route adopted to obtain materials were effective. The distorted perovskite structure have obtained the type orthorhombic and rhombohedral; important for fuel cell cathodes. The presentation material properties required of a candidate cathode materials for fuel cells. XRD analysis contacted by the distortion of the structures of the synthesized materials. The analyzes show that the electrical conductivity obtained materials have the potential to act as a cell to the cathode of solid oxide fuel, allowing to infer an order of values for the electrical conductivities of perovskites where LaFeO3 < LaNiO3 < LaNi0,5Fe0,5O3. It can be concluded that the activity of these perovskites is due to the presence of structural defects generated that depend on the method of synthesis and the subsequent heat treatment
Resumo:
Fuel cells are electrochemical devices that convert chemical energy into electricity. Due to the development of new materials, fuel cells are emerging as generating clean energy generator. Among the types of fuel cells, categorized according to the electrode type, the solid oxide fuel cells (SOFC) stand out due to be the only device entirely made of solid particles. Beyond that, their operation temperature is relatively high (between 500 and 1000 °C), allowing them to operate with high efficiency. Another aspect that promotes the use of SOFC over other cells is their ability to operate with different fuels. The CeO2 based materials doped with rare earth (TR+3) may be used as alternatives to traditional NiO-YSZ anodes as they have higher ionic conductivity and smaller ohmic losses compared to YSZ, and can operate at lower temperatures (500-800°C). In the composition of the anode, the concentration of NiO, acting as a catalyst in YSZ provides high electrical conductivity and high electrochemical activity of reactions, providing internal reform in the cell. In this work compounds of NiO - Ce1-xEuxO2-δ (x = 0.1, 0.2 and 0.3) were synthesized from polymeric precursor, Pechini, method of combustion and also by microwave-assisted hydrothermal method. The materials were characterized by the techniques of TG, TPR, XRD and FEG-SEM. The refinement of data obtained by X-ray diffraction showed that all powders of NiO - Cex-1EuxO2-δ crystallized in a cubic phase with fluorite structure, and also the presence of Ni. Through the characterizations can be proved that all routes of preparation used were effective for producing ceramics with characteristics suitable for application as SOFC anodes, but the microwave-assisted hydrothermal method showed a significant reduction in the average grain size and improved control of the compositions of the phases
Resumo:
Magnetic ceramics have been widely investigated, especially with respect to intrinsic and extrinsic characteristics of these materials. Among the magnetic ceramic materials of technological interest, there are the ferrites. On the other hand, the thermal treatment of ceramic materials by microwave energy has offered various advantages such as: optimization of production processes, high heat control, low consumption of time and energy among others. In this work were synthesized powders of Ni-Zn ferrite with compositions Ni1- xZnxFe2O4 (0.25 ≤ x ≤ 0.75 mols) by the polymeric precursor route in two heat treatment conditions, conventional oven and microwave energy at 500, 650, 800 and 950°C and its structural, and morphological imaging. The materials were characterized by thermal analysis (TG/ DSC), X-ray diffraction (XRD), absorption spectroscopy in the infrared (FTIR), scanning electron microscopy (SEM), X-ray spectroscopy and energy dispersive (EDS) and vibrating sample magnetometry (VSM). The results of X-ray diffraction confirmed the formation of ferrite with spinel-type cubic structure. The extrinsic characteristics of the powders obtained by microwave calcination and influence significantly the magnetic behavior of ferrites, showing particles ferrimagnéticas characterized as soft magnetic materials (soft), is of great technological interest. The results obtained led the potential application of microwave energy for calcining powders of Ni-Zn ferrite
Resumo:
Recent studies are investigating a new class of inorganic materials which arise as a promising option for high performance applications in the field of photoluminescence. Highlight for rare earth (TR +3 ) doped, which have a high luminous efficiency, long decay time and being able to emit radiation in the visible range, specific to each element. In this study, we synthesized ZrO2: Tb +3 , Eu +3 , Tm +3 nanoparticles complex polymerization method (CPM). We investigated the influences caused by the heat treatment temperature and the content of dopants in zirconia photoluminescent behavior. The particles were calcined at temperature of 400, 500 and 600 ° C for two hours and ranged in concentration of dopants 1, 2, 4 and 8 mol% TR +3 . The samples were characterized by thermal analysis, X-ray diffraction, photoluminescence of measurements and uv-visible of spectroscopies. The results of X-ray diffraction confirmed the formation of the tetragonal and cubic phases in accordance with the content of dopants. The photoluminescence spectra show emission in the region corresponding simultaneous to blue (450 nm), green (550 nm) and red (615 nm). According to the results, ZrO2 particles co-doped with rare earth ions is a promising material white emission with a potential application in the field of photoluminescence