4 resultados para Método de laboratório
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The ethanol is the most overused psychoactive drug over the world; this fact makes it one of the main substances required in toxicological exams nowadays. The development of an analytical method, adaptation or implementation of a method known, involves a process of validation that estimates its efficiency in the laboratory routine and credibility of the method. The stability is defined as the ability of the sample of material to keep the initial value of a quantitative measure for a defined period within specific limits when stored under defined conditions. This study aimed to evaluate the method of Gas chromatography and study the stability of ethanol in blood samples, considering the variables time and temperature of storage, and the presence of preservative and, with that check if the conditions of conservation and storage used in this study maintain the quality of the sample and preserve the originally amount of analyte present. Blood samples were collected from 10 volunteers to evaluate the method and to study the stability of ethanol. For the evaluation of the method, part of the samples was added to known concentrations of ethanol. In the study of stability, the other side of the pool of blood was placed in two containers: one containing the preservative sodium fluoride 1% and the anticoagulant heparin and the other only heparin, was added ethanol at a concentration of 0.6 g/L, fractionated in two bottles, one being stored at 4ºC (refrigerator) and another at -20ºC (freezer), the tests were performed on the same day (time zero) and after 1, 3, 7, 14, 30 and 60 days of storage. The assessment found the difference in results during storage in relation to time zero. It used the technique of headspace associated with gas chromatography with the FID and capillary column with stationary phase of polyethylene. The best analysis of chromatographic conditions were: temperature of 50ºC (column), 150ºC (jet) and 250ºC (detector), with retention time for ethanol from 9.107 ± 0.026 and the tercbutanol (internal standard) of 8.170 ± 0.081 minutes, the ethanol being separated properly from acetaldehyde, acetone, methanol and 2-propanol, which are potential interfering in the determination of ethanol. The technique showed linearity in the concentration range of 0.01 and 3.2 g/L (0.8051 x + y = 0.6196; r2 = 0.999). The calibration curve showed the following equation of the line: y = x 0.7542 + 0.6545, with a linear correlation coefficient equal to 0.996. The average recovery was 100.2%, the coefficients of variation of accuracy and inter intra test showed values of up to 7.3%, the limit of detection and quantification was 0.01 g/L and showed coefficient of variation within the allowed. The analytical method evaluated in this study proved to be fast, efficient and practical, given the objective of this work satisfactorily. The study of stability has less than 20% difference in the response obtained under the conditions of storage and stipulated period, compared with the response obtained at time zero and at the significance level of 5%, no statistical difference in the concentration of ethanol was observed between analysis. The results reinforce the reliability of the method of gas chromatography and blood samples in search of ethanol, either in the toxicological, forensic, social or clinic
Resumo:
The main aim of this study was to compare the procedure for dehydration of Gracilaria birdiae prepared handmade and laboratory, collected in the northern coast of Rio Grande do Norte. The sample was collected in the Rio do Fogo beach in march 2009. The sample collected followed by two processing, the first the material prepared in laboratory was air-dried at 50°C for 24 hours in air-flow oven. The second the handmade sample was air-dried on the sun during three days. The extract was prepared in three different solvents: ethanol, hydroethanol and water, resulting in ethanol, hidroethanol and aqueous extracts from handmade and laboratory sample. In according with results only the ethanol extract was fractionated yielding the fractions hexane, dichloromethane and ethyl acetate fractions. The different process to obtain Gracilaria birdiae resulted in the samples with different shades. The soluble solids content was higher in the laboratory sample. The chemical composition the both samples were characterized by presenting a considerable amounts of carbohydrates, with amior percentage protein and ash, respectively, in the handmade and laboratory sample. In two samples showed a low content of lipids and the lipid profile showed a higher proportion of monounsaturated fatty acids, with the absence polyunsaturated handmade sample. The phytochemical screening by chemical reactions showed the presence of flavonoids, tannins, alkaloids and saponins the laboratory sample, presenting a greater diversity of bioactive compounds. Through of the analysis by thin layer chromatography was possible to identify the phytosterols β-sitosterol and stigmasterol the both samples, also suggest the presence of β-carotene and chlorophyll α the laboratory sample. The levels of total phenolics and flavonoids were more significant in the ethanol extract of the laboratory sample. The in vitro lethality showed that extracts of the laboratory sample and handmade from 125 to 500 μg/ mL, respectively, were highly lethal. In the evaluation of antioxidant capacity by the system β-carotene/ácido linoleic method and by DPPH radical scavernging assay, the ethanol extract from the laboratory process showed significantly greater activity than the other extracts, being and the first and second methods, respectively, lower and equivalent to the synthetic antioxidant BHT. The handmade ethanol extract has not demonstrated skill in deactivating free radicals, but showed activity in inhibiting lipid peroxidation, although the values were significantly lower than the laboratory sample. We conclude that the dehydration process in the laboratory is the most efficient technique to maintenance of the chemical composition present in the seaweed, providing beneficial properties such as antioxidant capacity. We emphasize that this property can be explored with the objective of adding commercial value to the final product, which will promote the expansion of production of this seaweed in the community of Rio do Fogo
Resumo:
The herbal medicine Sanativo® is produced by the Pernambucano Laboratory since 1888 with indications of healing and hemostasis. It is composed of a fluid extract about Piptadenia colubrina, Schinus terebinthifolius, Cereus peruvianus and Physalis angulata. Among the plants in their composition, S. terebinthifolius and P. colubrina have in common phenolic compounds which are assigned most of its pharmacological effects. The tannins, gallic acid and catechin were selected as markers for quality control. The aim of this study was the development and validation of analytical method by HPLC/UV/DAD for the separation and simultaneous quantification of gallic acid (GAC) and catechin (CTQ) in Sanativo®. The chromatographic system was to stationary phase, C-18 RP column, 4,6 x 150 mm (5 mm) under a temperature of 35 ° C, detection at 270 and 210 nm. The mobile phase consisted of 0.05% trifluoroacetic acid and methanol in the proportions 88:12 (v/v), a flow rate of 1 ml/min. The analytical method presented a retention factor of 0.30 and 1.36, tail factor of 1.8 and 1.63 for gallic acid and catechin, respectively, resolution of 18.2, and theoretical plates above 2000. The method validation parameters met the requirements of Resolution n º 899 of May 29, 2003, ANVISA. The correlation coefficient of linear regression analysis for GAC and CTQ from the standard solution was 0.9958 and 0.9973 and when performed from the Sanativo® 0.9973 and 0.9936, the matrix does not interfere in the range 70 to 110 %. The limits of detection and quantification for GAC and CQT were 3.25 and 0.863, and 9.57 and 2.55 mg/mL, respectively. The markers, GAC and CQT, showed repetibility (coefficient of variation of 0.94 % and 2.36 %) and satisfactory recovery (100.02 ± 1.11 % and 101.32 ± 1.36 %). The method has been characterized selective and robust quantification of GAC and CTQ in the Sanativo® and was considered validated
Resumo:
The considered work presents the procedure for evaluation of the uncertainty related to the calibration of flow measurers and to BS&W. It is about a new method of measurement purposed by the conceptual project of the laboratory LAMP, at Universidade Federal do Rio Grande do Norte, that intends to determine the conventional true value of the BS&W from the total height of the liquid column in the auditor tank, hydrostatic pressure exerted by the liquid column, local gravity, specific mass of the water and the specific mass of the oil, and, to determine the flow, from total height of liquid column and transfer time. The calibration uses a automatized system of monitoration and data acquisition of some necessary largnesses to determine of flow and BS&W, allowing a better trustworthiness of through measurements