3 resultados para Luffa cylindrica

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composite materials arise from the need for lighter materials and with bigger mechanical and thermal resistance. The difficulties of discard, recycling or reuse are currently environmental concerns and, therefore, they are study object of much researches. In this perspective the feasibility of using loofahs (Luffa Cylindrica) for obtainment of a polymeric matrix composite was studied. Six formulations, with 4, 5 and 6 treated layers and untreated, were tested. The loofahs were treated in boiling water to remove lignins, waxes and impurities present in the fibers. After that, they were dried in a direct exposure solar dryer. For the characterization of the composite, thermal (thermal conductivity, thermal capacity, thermal diffusivity and thermal resistivity), mechanical (tensile and bending resistance) and physicochemical (SEM, XRD, density, absorption and degradation) properties were determined. The proposed composite has as advantage the low fiber density, which is around 0.66 g/cm³ (almost half of the polyester resin matrix), resulting in an average composite density of around 1.17g/cm³, 6.0 % lower in relation to the matrix. The treatment carried out in the loofahs increased the mechanical strength of the composite and decreased the humidity absorption. The composite showed lower mechanical behavior than the matrix for all the formulations. The composite also demonstrated itself to be feasible for thermal applications, with a value of thermal conductivity of less than 0.159 W/m.K, ranking it as a good thermal insulator. For all formulations/settings a low adherence between fibers and matrix occurred, with the presence of cracks, showing the fragility due to low impregnation of the fiber by the matrix. This composite can be used to manufacture structures that do not require significant mechanical strength, such as solar prototypes, as ovens and stoves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composite materials arise from the need for lighter materials and with bigger mechanical and thermal resistance. The difficulties of discard, recycling or reuse are currently environmental concerns and, therefore, they are study object of much researches. In this perspective the feasibility of using loofahs (Luffa Cylindrica) for obtainment of a polymeric matrix composite was studied. Six formulations, with 4, 5 and 6 treated layers and untreated, were tested. The loofahs were treated in boiling water to remove lignins, waxes and impurities present in the fibers. After that, they were dried in a direct exposure solar dryer. For the characterization of the composite, thermal (thermal conductivity, thermal capacity, thermal diffusivity and thermal resistivity), mechanical (tensile and bending resistance) and physicochemical (SEM, XRD, density, absorption and degradation) properties were determined. The proposed composite has as advantage the low fiber density, which is around 0.66 g/cm³ (almost half of the polyester resin matrix), resulting in an average composite density of around 1.17g/cm³, 6.0 % lower in relation to the matrix. The treatment carried out in the loofahs increased the mechanical strength of the composite and decreased the humidity absorption. The composite showed lower mechanical behavior than the matrix for all the formulations. The composite also demonstrated itself to be feasible for thermal applications, with a value of thermal conductivity of less than 0.159 W/m.K, ranking it as a good thermal insulator. For all formulations/settings a low adherence between fibers and matrix occurred, with the presence of cracks, showing the fragility due to low impregnation of the fiber by the matrix. This composite can be used to manufacture structures that do not require significant mechanical strength, such as solar prototypes, as ovens and stoves.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the last decade, biological purification of gaseous waste has become an important alternative to many conventional methods of exhaust air treatment. More recently, biofiltration has proved to be an effective and inexpensive method for the treatment of air contaminated with volatile organic compounds (VOCs). A biofilter consists in a reactor packed with a porous solid bed material, where the microorganisms are fixed. During the biofiltration process, polluted air is transported through the biofilter medium where the contaminant is degraded. Within the biofilm, the pollutants in the waste gases are energy and carbon sources for microbial metabolism and are transformed into CO2, water and biomass. The bed material should be characterized by satisfactory mechanical and physical properties as structure, void fraction, specific area and flow resistance. The aim of this research was the biofilter construction and study of the biological degradation of ethanol and toluene, as well as the modeling of the process. Luffa cylindrica is a brazilian fiber that was used as the filtering material of the present work. The parameters and conditions studied were: composition of nutrients solution; effect of microflorae strains, namely Pseudomanas putida and Rhodococcus rhodochrous; waste gas composition; air flow rate; and inlet load of VOCs. The biofilter operated in diffusion regime and the best results for remotion capacity were obtained when a microorganisms consortion of Pseudomanas putida and Rhodococcus rhodochrous,were used, with a gas flow rate of 1 m3.h-1 and molar ratio nitrogene/phosphore N/P=2 in the nutrients solution. The maximum remotion capacity for ethanol was around 90 g.m-3.h-1 and 50 g.m-3.h-1 to toluene. It was proved that toluene has inhibitory effect on the ethanol remotion When the two VOCs were present in the same waste gas, there was a decrease of 40% in ethanol remotion capacity. Luffa cylindrica does not present considerable pressure drop. Ottengraf and van Lith models were used to represent the results obtained for ethanol and toluene, respectively. The application of the transient model indicated a satisfactory approximation between the experimental results obtained for ethanol and toluene vapors biofiltration and the ones predicted it