9 resultados para Lubrication.

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fuel is a material used to produce heat or power by burning, and lubricity is the capacity for reducing friction. The aim of this work is evaluate the lubricity of eight fossil and renewable fuels used in Diesel engines, by means of a HFRR tester, following the ASTM D 6079-04 Standard. In this conception, a sphere of AISI 52100 steel (diameter of 6,000,05 mm, Ra 0,050,005 μm, E = 210 GPa, HRC 624, HV0,2 63147) is submitted to a reciprocating motion under a normal load of 2 N and 50 Hz frequency to promote a wear track length of 1.10.1mm in a plan disc of AISI 52100 steel (HV0,05 18410, Ra 0,020,005 μm). The testing extent time was 75 minutes, 225,000 cycles. Each one test was repeated six times to furnish the results, by means of intrinsic signatures from the signals of the lubricant film percentage, friction coefficient, contact heating, Sound Pressure Level, SPL [dB]. These signal signatures were obtained by two thermocouples and a portable decibelmeter coupled to a data acquisition system and to the HFRR system. The wettability of droplet of the diesel fuel in thermal equilibrium on a horizontal surface of a virgin plan disc of 52100 steel, Ra 0,02  0,005 μm, were measured by its contact angle of 7,0  3,5o, while the results obtained for the biodiesel B5, B20 and B100 blends originated by the ethylic transesterification of soybean oil were, respectively, 7,5  3,5o, 13,5  3,5o e 19,0  1,0o; for the distilled water, 78,0  6,0o; the biodiesel B5, B20 and B100 blends originated by the ethylic transesterification of sunflower oil were, respectively, 7,0  4,0o, 8,5  4,5o e 19,5  2,5o. Different thickness of lubricant film were formed and measured by their percentage by means of the contact resistance technique, suggesting several regimes, since the boundary until the hydrodynamic lubrication. All oils analyzed in this study promoted the ball wear scars with diameters smaller than 400 μm. The lowest values were observed in the scar balls lubricated by mixtures B100, B20 and B5 of sunflower and B20 and B5 of soybean oils (WSD < 215 μm)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently, vegetable oils have been studied for bio-lubricants base that fits the new environmental standards. Since, in a world full of finite natural resources, mineral oils bring consequences to the environment due to its low biodegradability and toxicity, also it is important to consider that synthetic oils have a high cost The aim of this work is to obtain a biolubricant additived with oxide nanoparticles (ZnO and CuO) for better resistance to friction and wear, which is not toxic to the environment and have better adherence under boundary lubrication. The methodology consisted in the synthesis of bio-lubricants (soybean and sunflower base) by epoxidation reaction. Then, some physical-chemical analysis in bio-lubricants are made to characterize theses lubricants, such as, density, acidity, iodine value, viscosity, viscosity index. Later, the lubricants were additive with nanoparticles. The tribological performance was evaluated by the equipment HFRR (High Frequency Reciprocating Rig) consisting of a wear test ball-plan type. The characterization of wear analysis was performed by SEM / EDS. The results show that bio-lubricants may be synthesized by reaction of epoxidation with good conversion. Tribological point of view, the epoxidized oils are more effective than lubricant additived with the oxide nanoparticles, they had lower coefficients of friction and better rate of film formation in the study. However, because they are environmentally friendly, bio-lubricants gain the relevant importance in tribological field

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the increasing environmental awareness, maximizing biodegradability and minimizing ecotoxicity is the main driving force for new technological developments. Thus, can be developed new biodegradable lubricants for use in environmentally sensitive areas. The aim of this study was to obtain new bio-lubricants from passion fruit (Passiflora edulis Sims f. flavicarpa Degener) and moringa (Moringa oleifera Lamarck) epoxidized oils and develop a new additive package using experimental design for their use as a hydraulic fluid. In the first stage of this work was performed the optimization of the epoxidation process of the oils using fractional experimental design 24-1 , varying the temperature, reaction time, ratio of formic acid and hydrogen peroxide. In the second step was investigated the selectivity, thermodynamics and kinetics of the reaction for obtaining the two epoxides at 30, 50 and 70 °C. The result of the experimental design confirmed that the epoxidation of passion fruit oil requires 2 hours of reaction, 50 °C and a ratio H2O2/C=C/HCOOH (1:1:1). For moringa oil were required 2 hours reaction, 50 °C and a ratio of H2O2/C=C/HCOOH (1:1:1.5). The results of the final conversions were equal to 83.09% (± 0.3) for passion fruit oil epoxide and 91.02 (±0,4) for moringa oil epoxide. Following was made the 23 factorial design to evaluate which are the best concentrations of corrosion inhibitor and anti-wear (IC), antioxidant (BHA) and extreme pressure (EP) additives. The bio-lubricants obtained in this step were characterized according to DIN 51524 (Part 2 HLP) and DIN 51517 (Part 3 CLP) standards. The epoxidation process of the oils was able to improve the oxidative stability and reduce the total acid number, when compared to the in natura oils. Moreover, the epoxidized oils best solubilized additives, resulting in increased performance as a lubricant. In terms of physicochemical performance, the best lubricant fluid was the epoxidized moringa oil with additives (EMO-ADI), followed by the epoxidized passion fruit oil with additives (EPF-ADI) and, finally, the passion fruit in natura oil without additives (PFO). Lastly, was made the investigation of the tribological behavior under conditions of boundary lubrication for these lubricants. The tribological performance of the developed lubricants was analyzed on a HFRR equipment (High Frequency Reciprocating Rig) and the coefficient of friction, which occurs during the contact and the formation of the lubricating film, was measured. The wear was evaluated through optical microscopy and scanning electron microscopy (SEM). The results showed that the addition of extreme pressure (EP) and anti-wear and corrosion inhibitor (CI) additives significantly improve the tribological properties of the fluids. In all assays, was formed a lubricating film that is responsible for reducing the coefficient of metal-to-metal wear. It was observed that the addition of EP and IC additives in the in natura vegetable oils of passion fruit and moringa did not favor a significant reduction in wear. The bio-lubricants developed from passion fruit and moringa oils modified via epoxidation presented satisfactory tribological properties and shown to be potential lubricants for replacement of commercial mineral-based fluids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drilling fluids have fundamental importance in the petroleum activities, since they are responsible for remove the cuttings, maintain pressure and well stability, preventing collapse and inflow of fluid into the rock formation and maintain lubrication and cooling the drill. There are basically three types of drilling fluids: water-based, non-aqueous and aerated based. The water-based drilling fluid is widely used because it is less aggressive to the environment and provide excellent stability and inhibition (when the water based drilling fluid is a inhibition fluid), among other qualities. Produced water is generated simultaneously with oil during production and has high concentrations of metals and contaminants, so it’s necessary to treat for disposal this water. The produced water from the fields of Urucu-AM and Riacho da forquilha-RN have high concentrations of contaminants, metals and salts such as calcium and magnesium, complicating their treatment and disposal. Thus, the objective was to analyze the use of synthetic produced water with similar characteristics of produced water from Urucu-AM and Riacho da Forquilha-RN for formulate a water-based drilling mud, noting the influence of varying the concentration of calcium and magnesium into filtered and rheology tests. We conducted a simple 32 factorial experimental design for statistical modeling of data. The results showed that the varying concentrations of calcium and magnesium did not influence the rheology of the fluid, where in the plastic viscosity, apparent viscosity and the initial and final gels does not varied significantly. For the filtrate tests, calcium concentration in a linear fashion influenced chloride concentration, where when we have a higher concentration of calcium we have a higher the concentration of chloride in the filtrate. For the Urucu’s produced water based fluids, volume of filtrate was observed that the calcium concentration influences quadratically, this means that high calcium concentrations interfere with the power of the inhibitors used in the formulation of the filtered fluid. For Riacho’s produced water based fluid, Calcium’s influences is linear for volume of filtrate. The magnesium concentration was significant only for chloride concentration in a quadratic way just for Urucu’s produced water based fluids. The mud with maximum concentration of magnesium (9,411g/L), but minimal concentration of calcium (0,733g/L) showed good results. Therefore, a maximum water produced by magnesium concentration of 9,411g/L and the maximum calcium concentration of 0,733g/L can be used for formulating water-based drilling fluids, providing appropriate properties for this kind of fluid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cutting fluids are lubricants used in machining processes, because they present many benefits for different processes. They have many functions, such as lubrication, cooling, improvement in surface finishing, besides they decreases the tool wear and protect it against corrosion. Therefore due to new environment laws and demand to green products, new cutting fluids must be development. These shall be biodegradable, non-toxic, safety for environment and operator healthy. Thus, vegetable oils are a good option to solve this problem, replacing the mineral oils. In this context, this work aimed to develop an emulsion cutting fluid from epoxidized vegetable oil, promoting better lubrication and cooling in machining processes, besides being environment friendly. The methodology was divided in five steps: first one was the biolubricant synthesis by epoxidation reaction. Following this, the biolubricant was characterized in terms of density, acidity, iodo index, oxirane index, viscosity, thermal stability and chemical composition. The third step was to develop an emulsion O/A with different oil concentration (10, 20 and 25%) and surfactant concentration (1, 2.5 and 5%). Also, emulsion stability was studied. The emulsion tribological performance were carried out in HFRR (High Frequency Reciprocating Rig), it consists in ball-disc contact. Results showed that the vegetable based lubricant may be synthesized by epoxidationreaction, the spectra showed that there was 100% conversion of the epoxy rings unsaturations. In regard the tribological assessment is observed that the percentage of oil present in the emulsion directly influenced the film formation and coefficient of friction for higher concentrations the film formation process is slow and unstable, and the coefficient of friction. The high concentrations of surfactants have not improved the emulsions tribological performance. The best performance in friction reduction was observed to emulsion with 10% of oil and 5% of surfactant, its average wear scar was 202 μm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermodynamic performance of a refrigeration system can be improved by reducing the compression work by a particular technique for a specific heat removal rate. This study examines the effect of small concentrations of Al2O3 (50 nm) nanoparticles dispersion in the mineral oil based lubricant on the: viscosity, thermal conductivity, and lubrication characteristics as well as the overall performance (based on the Second Law of Thermodynamics) of the refrigerating system using R134a or R600a as refrigerants. The study looked at the influences of variables: i) refrigerant charge (100, 110, 120 and 130 g), ii) rotational speed of the condenser blower (800 and 1100 RPM) and iii) nanoparticle concentration (0.1 and 0.5 g/l) on the system performance based on the Taguchi method in a matrix of L8 trials with the criterion "small irreversibility is better”. They were carried pulldown and cycling tests according to NBR 12866 and NBR 12869, respectively, to evaluate the operational parameters: on-time ratio, cycles per hour, suction and discharge pressures, oil sump temperature, evaporation and condensation temperatures, energy consumption at the set-point, total energy consumption and compressor power. In order to evaluate the nanolubricant characteristics, accelerated tests were performed in a HFRR bench. In each 60 minutes test with nanolubricants at a certain concentration (0, 0.1 and 0.5 g/l), with three replications, the sphere (diameter 6.00 ± 0.05 mm, Ra 0.05 ± 0.005 um, AISI 52100 steel, E = 210 GPa, HRC 62 ± 4) sliding on a flat plate (cast iron FC200, Ra <0.5 ± 0.005 um) in a reciprocating motion with amplitude of 1 mm, frequency 20 Hz and a normal load of 1,96 N. The friction coefficient signals were recorded by sensors coupled to the HFRR system. There was a trend commented bit in the literature: a nanolubricant viscosity reduction at the low nanoparticles concentrations. It was found the dominant trend in the literature: increased thermal conductivity with increasing nanoparticles mass fraction in the base fluid. Another fact observed is the significant thermal conductivity growth of nanolubricant with increasing temperature. The condenser fan rotational speed is the most influential parameter (46.192%) in the refrigerator performance, followed by R600a charge (38.606%). The Al2O3 nanoparticles concentration in the lubricant plays a minor influence on system performance, with 12.44%. The results of power consumption indicates that the nanoparticles addition in the lubricant (0.1 g/L), together with R600a, the refrigerator consumption is reduced of 22% with respect to R134a and POE lubricant. Only the Al2O3 nanoparticles addition in the lubricant results in a consumption reduction of about 5%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermodynamic performance of a refrigeration system can be improved by reducing the compression work by a particular technique for a specific heat removal rate. This study examines the effect of small concentrations of Al2O3 (50 nm) nanoparticles dispersion in the mineral oil based lubricant on the: viscosity, thermal conductivity, and lubrication characteristics as well as the overall performance (based on the Second Law of Thermodynamics) of the refrigerating system using R134a or R600a as refrigerants. The study looked at the influences of variables: i) refrigerant charge (100, 110, 120 and 130 g), ii) rotational speed of the condenser blower (800 and 1100 RPM) and iii) nanoparticle concentration (0.1 and 0.5 g/l) on the system performance based on the Taguchi method in a matrix of L8 trials with the criterion "small irreversibility is better”. They were carried pulldown and cycling tests according to NBR 12866 and NBR 12869, respectively, to evaluate the operational parameters: on-time ratio, cycles per hour, suction and discharge pressures, oil sump temperature, evaporation and condensation temperatures, energy consumption at the set-point, total energy consumption and compressor power. In order to evaluate the nanolubricant characteristics, accelerated tests were performed in a HFRR bench. In each 60 minutes test with nanolubricants at a certain concentration (0, 0.1 and 0.5 g/l), with three replications, the sphere (diameter 6.00 ± 0.05 mm, Ra 0.05 ± 0.005 um, AISI 52100 steel, E = 210 GPa, HRC 62 ± 4) sliding on a flat plate (cast iron FC200, Ra <0.5 ± 0.005 um) in a reciprocating motion with amplitude of 1 mm, frequency 20 Hz and a normal load of 1,96 N. The friction coefficient signals were recorded by sensors coupled to the HFRR system. There was a trend commented bit in the literature: a nanolubricant viscosity reduction at the low nanoparticles concentrations. It was found the dominant trend in the literature: increased thermal conductivity with increasing nanoparticles mass fraction in the base fluid. Another fact observed is the significant thermal conductivity growth of nanolubricant with increasing temperature. The condenser fan rotational speed is the most influential parameter (46.192%) in the refrigerator performance, followed by R600a charge (38.606%). The Al2O3 nanoparticles concentration in the lubricant plays a minor influence on system performance, with 12.44%. The results of power consumption indicates that the nanoparticles addition in the lubricant (0.1 g/L), together with R600a, the refrigerator consumption is reduced of 22% with respect to R134a and POE lubricant. Only the Al2O3 nanoparticles addition in the lubricant results in a consumption reduction of about 5%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The micro-deformations caused by cyclic loading origins the variation of the distances between atoms of the crystal lattice producing the irreversible component. In order to study and understand the microstructural behavior of the material this paper investigated the influence suffered by residual stresses in thrust rolling bearing races fabricated in AISI 52100 steel, after tests by cyclic rolling contact in a tribometer at 1m/s under two contact pressures (500 MPa and 1400 MPa) in dry and boundary lubrication conditions. Procedures of tests thermo-acustically isolated were developed for monitoring the contact temperature and sound pressure level signals to establish a comparison between the residual stress measurements, micro-hardness Vickers and micrographic registers searching an indication of wear evolution. The sin²ψ method by X-ray diffraction technique was used to quantify the residual stresses. Three raceway zones were selected for the evaluation of wear and surface morphology after predetermined cycling, comparing with their new condition ("as received"). Micro-hardness and residual stress measurements showed significant changes after the tests and it was possible to observe the relationship between the increase of sound pressure level and the residual stress for dry and lubricated conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The micro-deformations caused by cyclic loading origins the variation of the distances between atoms of the crystal lattice producing the irreversible component. In order to study and understand the microstructural behavior of the material this paper investigated the influence suffered by residual stresses in thrust rolling bearing races fabricated in AISI 52100 steel, after tests by cyclic rolling contact in a tribometer at 1m/s under two contact pressures (500 MPa and 1400 MPa) in dry and boundary lubrication conditions. Procedures of tests thermo-acustically isolated were developed for monitoring the contact temperature and sound pressure level signals to establish a comparison between the residual stress measurements, micro-hardness Vickers and micrographic registers searching an indication of wear evolution. The sin²ψ method by X-ray diffraction technique was used to quantify the residual stresses. Three raceway zones were selected for the evaluation of wear and surface morphology after predetermined cycling, comparing with their new condition ("as received"). Micro-hardness and residual stress measurements showed significant changes after the tests and it was possible to observe the relationship between the increase of sound pressure level and the residual stress for dry and lubricated conditions.