12 resultados para Linear system solve
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
An important unsolved problem in medical science concerns the physical origin of the sigmoidal shape of pressure volume curves of healthy (and some unhealthy) lungs. Such difficulties are expected because the lung, which is the most important structure in the respiratory system, is extremely complex. Its rheological properties are unknown and seem to depend on phenomena occurring from the alveolar scale up to the thoracic scale. Conventional wisdom holds that linear response, i.e., Hooke s law, together with alveolar overdistention, play a dominant role in respiration, but such assumptions cannot explainthe crucial empirical sigmoidal shape of the curves. In this doctorate thesis, we propose an alternative theory to solve this problem, based on the alveolar recruitment together with the nonlinear elasticity of the alveoli. This theory suggests that recruitment may be the predominant factor shaping these curves in the entire range of pressures normally employed in experiments. The proposed model correctly predicts the observed sigmoidal pressure volume curves, allowing us to discuss adequately the importance of this result, as well as its implications for medical practice
Resumo:
This work presents the positional nonlinear geometric formulation for trusses using different strain measures. The positional formulation presents an alternative approach for nonlinear problems. This formulation considers nodal positions as variables of the nonlinear system instead of displacements (widely found in literature). The work also describes the arc-length method used for tracing equilibrium paths with snap-through and snap-back. Numerical applications for trusses already established in the literature and comparisons with other studies are provided to prove the accuracy of the proposed formulation
Resumo:
In last decades, neural networks have been established as a major tool for the identification of nonlinear systems. Among the various types of networks used in identification, one that can be highlighted is the wavelet neural network (WNN). This network combines the characteristics of wavelet multiresolution theory with learning ability and generalization of neural networks usually, providing more accurate models than those ones obtained by traditional networks. An extension of WNN networks is to combine the neuro-fuzzy ANFIS (Adaptive Network Based Fuzzy Inference System) structure with wavelets, leading to generate the Fuzzy Wavelet Neural Network - FWNN structure. This network is very similar to ANFIS networks, with the difference that traditional polynomials present in consequent of this network are replaced by WNN networks. This paper proposes the identification of nonlinear dynamical systems from a network FWNN modified. In the proposed structure, functions only wavelets are used in the consequent. Thus, it is possible to obtain a simplification of the structure, reducing the number of adjustable parameters of the network. To evaluate the performance of network FWNN with this modification, an analysis of network performance is made, verifying advantages, disadvantages and cost effectiveness when compared to other existing FWNN structures in literature. The evaluations are carried out via the identification of two simulated systems traditionally found in the literature and a real nonlinear system, consisting of a nonlinear multi section tank. Finally, the network is used to infer values of temperature and humidity inside of a neonatal incubator. The execution of such analyzes is based on various criteria, like: mean squared error, number of training epochs, number of adjustable parameters, the variation of the mean square error, among others. The results found show the generalization ability of the modified structure, despite the simplification performed
Resumo:
The present work describes the use of a mathematical tool to solve problems arising from control theory, including the identification, analysis of the phase portrait and stability, as well as the temporal evolution of the plant s current induction motor. The system identification is an area of mathematical modeling that has as its objective the study of techniques which can determine a dynamic model in representing a real system. The tool used in the identification and analysis of nonlinear dynamical system is the Radial Basis Function (RBF). The process or plant that is used has a mathematical model unknown, but belongs to a particular class that contains an internal dynamics that can be modeled.Will be presented as contributions to the analysis of asymptotic stability of the RBF. The identification using radial basis function is demonstrated through computer simulations from a real data set obtained from the plant
Resumo:
This work shows a study about the Generalized Predictive Controllers with Restrictions and their implementation in physical plants. Three types of restrictions will be discussed: restrictions in the variation rate of the signal control, restrictions in the amplitude of the signal control and restrictions in the amplitude of the Out signal (plant response). At the predictive control, the control law is obtained by the minimization of an objective function. To consider the restrictions, this minimization of the objective function is done by the use of a method to solve optimizing problems with restrictions. The chosen method was the Rosen Algorithm (based on the Gradient-projection). The physical plants in this study are two didactical systems of water level control. The first order one (a simple tank) and another of second order, which is formed by two tanks connected in cascade. The codes are implemented in C++ language and the communication with the system to be done through using a data acquisition panel offered by the system producer
Resumo:
This work addresses the dynamic control problem of two-wheeled differentially driven non-holonomic mobile robot. Strategies for robot positioning control and robot orientating control are presented. Such strategies just require information about the robot con¯guration (x, y and teta), which can be collected by an absolute positioning system. The strategies development is related to a change on the controlled variables for such systems, from x, y and teta to s (denoting the robot linear displacement) and teta, and makes use of the polar coordinates representation for the robot kinematic model. Thus, it is possible to obtain a linear representation for the mobile robot dynamic model and to develop such strategies. It is also presented that such strategies allow the use of linear controllers to solve the control problem. It is shown that there is flexibility to choice the linear controller (P, PI, PID, Model Matching techniques, others) to be implemented. This work presents an introduction to mobile robotics and their characteristics followed by the control strategies development and controllers design. Finally, simulated and experimental results are presented and commented
Resumo:
The present work presents the study and implementation of an adaptive bilinear compensated generalized predictive controller. This work uses conventional techniques of predictive control and includes techniques of adaptive control for better results. In order to solve control problems frequently found in the chemical industry, bilinear models are considered to represent the dynamics of the studied systems. Bilinear models are simpler than general nonlinear model, however it can to represent the intrinsic not-linearities of industrial processes. The linearization of the model, by the approach to time step quasilinear , is used to allow the application of the equations of the generalized predictive controller (GPC). Such linearization, however, generates an error of prediction, which is minimized through a compensation term. The term in study is implemented in an adaptive form, due to the nonlinear relationship between the input signal and the prediction error.Simulation results show the efficiency of adaptive predictive bilinear controller in comparison with the conventional.
Resumo:
Slugging is a well-known slugging phenomenon in multiphase flow, which may cause problems such as vibration in pipeline and high liquid level in the separator. It can be classified according to the place of its occurrence. The most severe, known as slugging in the riser, occurs in the vertical pipe which feeds the platform. Also known as severe slugging, it is capable of causing severe pressure fluctuations in the flow of the process, excessive vibration, flooding in separator tanks, limited production, nonscheduled stop of production, among other negative aspects that motivated the production of this work . A feasible solution to deal with this problem would be to design an effective method for the removal or reduction of the system, a controller. According to the literature, a conventional PID controller did not produce good results due to the high degree of nonlinearity of the process, fueling the development of advanced control techniques. Among these, the model predictive controller (MPC), where the control action results from the solution of an optimization problem, it is robust, can incorporate physical and /or security constraints. The objective of this work is to apply a non-conventional non-linear model predictive control technique to severe slugging, where the amount of liquid mass in the riser is controlled by the production valve and, indirectly, the oscillation of flow and pressure is suppressed, while looking for environmental and economic benefits. The proposed strategy is based on the use of the model linear approximations and repeatedly solving of a quadratic optimization problem, providing solutions that improve at each iteration. In the event where the convergence of this algorithm is satisfied, the predicted values of the process variables are the same as to those obtained by the original nonlinear model, ensuring that the constraints are satisfied for them along the prediction horizon. A mathematical model recently published in the literature, capable of representing characteristics of severe slugging in a real oil well, is used both for simulation and for the project of the proposed controller, whose performance is compared to a linear MPC
Resumo:
In this work we obtain the cosmological solutions and investigate the thermodynamics of matter creation in two diferent contexts. In the first we propose a cosmological model with a time varying speed of light c. We consider two diferent time dependence of c for a at Friedmann-Robertson- Walker (FRW) universe. We write the energy conservation law arising from Einstein equations and study how particles are created as c decreases with cosmic epoch. The variation of c is coupled to a cosmological Λ term and both singular and non-singular solutions are possible. We calculate the "adiabatic" particle creation rate and the total number of particles as a function of time and find the constrains imposed by the second law of thermodynamics upon the models. In the second scenario, we study the nonlinearity of the electrodynamics as a source of matter creation in the cosmological models with at FRW geometry. We write the energy conservation law arising from Einstein field equations with cosmological term Λ, solve the field equations and study how particles are created as the magnetic field B changes with cosmic epoch. We obtain solutions for the adiabatic particle creation rate, the total number of particles and the scale factor as a function of time in three cases: Λ = 0, Λ = constant and Λ α H2 (cosmological term proportional to the Hubble parameter). In all cases, the second law of thermodynamics demands that the universe is not contracting (H ≥ 0). The first two solutions are non-singular and exhibit in ationary periods. The third case studied allows an always in ationary universe for a suficiently large cosmological term
Resumo:
The separation methods are reduced applications as a result of the operational costs, the low output and the long time to separate the uids. But, these treatment methods are important because of the need for extraction of unwanted contaminants in the oil production. The water and the concentration of oil in water should be minimal (around 40 to 20 ppm) in order to take it to the sea. Because of the need of primary treatment, the objective of this project is to study and implement algorithms for identification of polynomial NARX (Nonlinear Auto-Regressive with Exogenous Input) models in closed loop, implement a structural identification, and compare strategies using PI control and updated on-line NARX predictive models on a combination of three-phase separator in series with three hydro cyclones batteries. The main goal of this project is to: obtain an optimized process of phase separation that will regulate the system, even in the presence of oil gushes; Show that it is possible to get optimized tunings for controllers analyzing the mesh as a whole, and evaluate and compare the strategies of PI and predictive control applied to the process. To accomplish these goals a simulator was used to represent the three phase separator and hydro cyclones. Algorithms were developed for system identification (NARX) using RLS(Recursive Least Square), along with methods for structure models detection. Predictive Control Algorithms were also implemented with NARX model updated on-line, and optimization algorithms using PSO (Particle Swarm Optimization). This project ends with a comparison of results obtained from the use of PI and predictive controllers (both with optimal state through the algorithm of cloud particles) in the simulated system. Thus, concluding that the performed optimizations make the system less sensitive to external perturbations and when optimized, the two controllers show similar results with the assessment of predictive control somewhat less sensitive to disturbances
Resumo:
In general, an inverse problem corresponds to find a value of an element x in a suitable vector space, given a vector y measuring it, in some sense. When we discretize the problem, it usually boils down to solve an equation system f(x) = y, where f : U Rm ! Rn represents the step function in any domain U of the appropriate Rm. As a general rule, we arrive to an ill-posed problem. The resolution of inverse problems has been widely researched along the last decades, because many problems in science and industry consist in determining unknowns that we try to know, by observing its effects under certain indirect measures. Our general subject of this dissertation is the choice of Tykhonov´s regulaziration parameter of a poorly conditioned linear problem, as we are going to discuss on chapter 1 of this dissertation, focusing on the three most popular methods in nowadays literature of the area. Our more specific focus in this dissertation consists in the simulations reported on chapter 2, aiming to compare the performance of the three methods in the recuperation of images measured with the Radon transform, perturbed by the addition of gaussian i.i.d. noise. We choosed a difference operator as regularizer of the problem. The contribution we try to make, in this dissertation, mainly consists on the discussion of numerical simulations we execute, as is exposed in Chapter 2. We understand that the meaning of this dissertation lays much more on the questions which it raises than on saying something definitive about the subject. Partly, for beeing based on numerical experiments with no new mathematical results associated to it, partly for being about numerical experiments made with a single operator. On the other hand, we got some observations which seemed to us interesting on the simulations performed, considered the literature of the area. In special, we highlight observations we resume, at the conclusion of this work, about the different vocations of methods like GCV and L-curve and, also, about the optimal parameters tendency observed in the L-curve method of grouping themselves in a small gap, strongly correlated with the behavior of the generalized singular value decomposition curve of the involved operators, under reasonably broad regularity conditions in the images to be recovered
Resumo:
The search for sustainable solutions through an appropriate environmental administration of the available natural resources, that comes from encounter to the aspirations of preservation of the environment and of the human being, in way to diagnose and to solve the environmental and social problems with the smallest possible impact to the nature and the man, it is the great challenge, so much for that generation, as for the future generations. The study of the environmental problems of the water and the participation and the social actors' environmental understanding as a whole, interferes in the field of the thematic environmental international, contemplating the strategic need of an appropriate administration of that very natural one, through a program returned to the diagnosis of the problems and in the search of compatible maintainable solutions, in a social and environmental politics of planning and environmental education, centered above all in the citizen's voice , user of that system. The present thesis she seeks to study the problem of the maintainable administration of the water, focusing the participation and the citizen's environmental understanding in the use of that very natural one for urban residential activities, in what concerns the approach and analyses of variables that treat of the measurement of general knowledge and you adapt, sense of community of the access to the means of information and of the attitudes and environmental behaviors, besides the variables of partner-demographic characterization or personal identification of the interviewed ones of an exploratory research of the type " survey ", accomplished through a stratified aleatory sampling, being the strata each one of the 4 (four) Political-Administrative Areas of the Natal city, having happened the collection of the data in the period of february to april/2002. The methodology used in this work it constitutes in the application of questionnaires with scales of the type Likert to measure the echo-varied of the study, besides a partner-demographic scale for the characterization of the studied sample. For the analysis of the results, it was made an exploratory descriptive study initially, followed by the use of techniques statistical multivariate s, such as, factorial analysis through the application of main components, besides the accomplishment of studies of multiple lineal regression. To complement this study, the accomplishment of Tests of Independence was proceeded through the Qui-square of Pearson, in way to verify the dependence of the associations between the partner-demographic variables and the principal selected variables and presents in the resulting factors of the factorial analysis. The results appear for a low level of environmental knowledge, of access to the information and community's sense, besides the verification that the principal factors resultants send for the need of feeling emphasis in the programs and administration actions addressed for the environmental understanding, the behaviors and attitudes that approach the information and the environmental education, besides the reuse of the water