9 resultados para Linear discriminant function
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Produced water is characterized as one of the most common wastes generated during exploration and production of oil. This work aims to develop methodologies based on comparative statistical processes of hydrogeochemical analysis of production zones in order to minimize types of high-cost interventions to perform identification test fluids - TIF. For the study, 27 samples were collected from five different production zones were measured a total of 50 chemical species. After the chemical analysis was applied the statistical data, using the R Statistical Software, version 2.11.1. Statistical analysis was performed in three steps. In the first stage, the objective was to investigate the behavior of chemical species under study in each area of production through the descriptive graphical analysis. The second step was to identify a function that classify production zones from each sample, using discriminant analysis. In the training stage, the rate of correct classification function of discriminant analysis was 85.19%. The next stage of processing of the data used for Principal Component Analysis, by reducing the number of variables obtained from the linear combination of chemical species, try to improve the discriminant function obtained in the second stage and increase the discrimination power of the data, but the result was not satisfactory. In Profile Analysis curves were obtained for each production area, based on the characteristics of the chemical species present in each zone. With this study it was possible to develop a method using hydrochemistry and statistical analysis that can be used to distinguish the water produced in mature fields of oil, so that it is possible to identify the zone of production that is contributing to the excessive elevation of the water volume.
Resumo:
Produced water is characterized as one of the most common wastes generated during exploration and production of oil. This work aims to develop methodologies based on comparative statistical processes of hydrogeochemical analysis of production zones in order to minimize types of high-cost interventions to perform identification test fluids - TIF. For the study, 27 samples were collected from five different production zones were measured a total of 50 chemical species. After the chemical analysis was applied the statistical data, using the R Statistical Software, version 2.11.1. Statistical analysis was performed in three steps. In the first stage, the objective was to investigate the behavior of chemical species under study in each area of production through the descriptive graphical analysis. The second step was to identify a function that classify production zones from each sample, using discriminant analysis. In the training stage, the rate of correct classification function of discriminant analysis was 85.19%. The next stage of processing of the data used for Principal Component Analysis, by reducing the number of variables obtained from the linear combination of chemical species, try to improve the discriminant function obtained in the second stage and increase the discrimination power of the data, but the result was not satisfactory. In Profile Analysis curves were obtained for each production area, based on the characteristics of the chemical species present in each zone. With this study it was possible to develop a method using hydrochemistry and statistical analysis that can be used to distinguish the water produced in mature fields of oil, so that it is possible to identify the zone of production that is contributing to the excessive elevation of the water volume.
Resumo:
Forecast is the basis for making strategic, tactical and operational business decisions. In financial economics, several techniques have been used to predict the behavior of assets over the past decades.Thus, there are several methods to assist in the task of time series forecasting, however, conventional modeling techniques such as statistical models and those based on theoretical mathematical models have produced unsatisfactory predictions, increasing the number of studies in more advanced methods of prediction. Among these, the Artificial Neural Networks (ANN) are a relatively new and promising method for predicting business that shows a technique that has caused much interest in the financial environment and has been used successfully in a wide variety of financial modeling systems applications, in many cases proving its superiority over the statistical models ARIMA-GARCH. In this context, this study aimed to examine whether the ANNs are a more appropriate method for predicting the behavior of Indices in Capital Markets than the traditional methods of time series analysis. For this purpose we developed an quantitative study, from financial economic indices, and developed two models of RNA-type feedfoward supervised learning, whose structures consisted of 20 data in the input layer, 90 neurons in one hidden layer and one given as the output layer (Ibovespa). These models used backpropagation, an input activation function based on the tangent sigmoid and a linear output function. Since the aim of analyzing the adherence of the Method of Artificial Neural Networks to carry out predictions of the Ibovespa, we chose to perform this analysis by comparing results between this and Time Series Predictive Model GARCH, developing a GARCH model (1.1).Once applied both methods (ANN and GARCH) we conducted the results' analysis by comparing the results of the forecast with the historical data and by studying the forecast errors by the MSE, RMSE, MAE, Standard Deviation, the Theil's U and forecasting encompassing tests. It was found that the models developed by means of ANNs had lower MSE, RMSE and MAE than the GARCH (1,1) model and Theil U test indicated that the three models have smaller errors than those of a naïve forecast. Although the ANN based on returns have lower precision indicator values than those of ANN based on prices, the forecast encompassing test rejected the hypothesis that this model is better than that, indicating that the ANN models have a similar level of accuracy . It was concluded that for the data series studied the ANN models show a more appropriate Ibovespa forecasting than the traditional models of time series, represented by the GARCH model
Resumo:
Over exploitation of oil deposits on land onshore or offshore, there is simultaneous generation of waste water, known as produced water, which represents the largest waste stream in the production of crude oil. The relationship between the chemical composition of oil and water production and the conditions in which this process occurs or is favored are still poorly studied. The area chosen for the study has an important oil reserve and an important aquifer saturated with freshwater meteoric. The aim of this work is to study some chemical parameters in water produced for each reservoir zone of production in mature oil fields of Açu Formation, using the hydrochemical and statistical analysis to serve as a reference and be used as tools against the indicator ranges water producers in oil producing wells. Samples were collected from different wells in 6 different areas of production and were measured 50 parameters, which can be classified into three groups: anions, cations and physicochemical properties (considering only the parameters that generated values above detection limits in all samples). Through the characterization hydrochemistry observed an area of water and chlorinated sodium, chlorinated calcium or magnesium (mixed) in well water in different areas of Açu, by applying a statistical treatment, we obtained a discriminant function that distinguishes chemically production areas. Thus, it was possible to calculate the rate of correct classification of the function was 76.3%. To validate this model the accuracy rate was 86%
Resumo:
Forecast is the basis for making strategic, tactical and operational business decisions. In financial economics, several techniques have been used to predict the behavior of assets over the past decades.Thus, there are several methods to assist in the task of time series forecasting, however, conventional modeling techniques such as statistical models and those based on theoretical mathematical models have produced unsatisfactory predictions, increasing the number of studies in more advanced methods of prediction. Among these, the Artificial Neural Networks (ANN) are a relatively new and promising method for predicting business that shows a technique that has caused much interest in the financial environment and has been used successfully in a wide variety of financial modeling systems applications, in many cases proving its superiority over the statistical models ARIMA-GARCH. In this context, this study aimed to examine whether the ANNs are a more appropriate method for predicting the behavior of Indices in Capital Markets than the traditional methods of time series analysis. For this purpose we developed an quantitative study, from financial economic indices, and developed two models of RNA-type feedfoward supervised learning, whose structures consisted of 20 data in the input layer, 90 neurons in one hidden layer and one given as the output layer (Ibovespa). These models used backpropagation, an input activation function based on the tangent sigmoid and a linear output function. Since the aim of analyzing the adherence of the Method of Artificial Neural Networks to carry out predictions of the Ibovespa, we chose to perform this analysis by comparing results between this and Time Series Predictive Model GARCH, developing a GARCH model (1.1).Once applied both methods (ANN and GARCH) we conducted the results' analysis by comparing the results of the forecast with the historical data and by studying the forecast errors by the MSE, RMSE, MAE, Standard Deviation, the Theil's U and forecasting encompassing tests. It was found that the models developed by means of ANNs had lower MSE, RMSE and MAE than the GARCH (1,1) model and Theil U test indicated that the three models have smaller errors than those of a naïve forecast. Although the ANN based on returns have lower precision indicator values than those of ANN based on prices, the forecast encompassing test rejected the hypothesis that this model is better than that, indicating that the ANN models have a similar level of accuracy . It was concluded that for the data series studied the ANN models show a more appropriate Ibovespa forecasting than the traditional models of time series, represented by the GARCH model
Resumo:
This study examines the complex hotel buyer decision process in front of the tourism distribution channels. Its objective is to describe the influence level of the tourism marketing intermediaries, mainly the travel agents and tour operators, over the hotel decision process by the buyer-tourist. The data collection process was done trough a survey with three hundred brazilian tourists hosted in nineteen hotels of Natal, capital of Rio Grande do Norte, Brazil. The data analysis was done using some multivariate statistic techniques as correlation analysis, multiple regression analysis, factor analysis and multiple discriminant analysis. The research characterizes the hotel services consumers profile and his trip, and identifying the distribution channels used by them. Furthermore, the research verifies the intermediaries influence exercised over hotel buyer decision process, looking for identify causality relations between the influence level and the buyer profile. Verifies that information about hotels available on internet reduces the probability that this influence can be practiced; however it was possible identifying those consumers considers this information complementary and non-substitutes than the information from intermediaries. The characteristics of the data do not allow indentifying the factors that constraint the intermediaries influence neither identifying discriminant functions of the specific distribution channel choice by consumers. The study concludes that consumers don t agree in have been influenced by intermediaries or don t know if they have, still considering important to consult them and internet doesn t substitute their function as information source
Resumo:
In this work we obtain the cosmological solutions and investigate the thermodynamics of matter creation in two diferent contexts. In the first we propose a cosmological model with a time varying speed of light c. We consider two diferent time dependence of c for a at Friedmann-Robertson- Walker (FRW) universe. We write the energy conservation law arising from Einstein equations and study how particles are created as c decreases with cosmic epoch. The variation of c is coupled to a cosmological Λ term and both singular and non-singular solutions are possible. We calculate the "adiabatic" particle creation rate and the total number of particles as a function of time and find the constrains imposed by the second law of thermodynamics upon the models. In the second scenario, we study the nonlinearity of the electrodynamics as a source of matter creation in the cosmological models with at FRW geometry. We write the energy conservation law arising from Einstein field equations with cosmological term Λ, solve the field equations and study how particles are created as the magnetic field B changes with cosmic epoch. We obtain solutions for the adiabatic particle creation rate, the total number of particles and the scale factor as a function of time in three cases: Λ = 0, Λ = constant and Λ α H2 (cosmological term proportional to the Hubble parameter). In all cases, the second law of thermodynamics demands that the universe is not contracting (H ≥ 0). The first two solutions are non-singular and exhibit in ationary periods. The third case studied allows an always in ationary universe for a suficiently large cosmological term
Resumo:
This study offers an analytical approach in order to provide a determination of the temperature field developed during the DC TIG welding of a thin plate of aluminum. The non-linear characteristics of the phenomenon, such as the dependence of the thermophysical and mechanical properties with temperature were considered in this study. In addition to the conductive heat exchange process, were taken into account the exchange by natural convection and radiation. A transient analysis is performed in order to obtain the temperature field as a function of time. It is also discussed a three-dimensional modeling of the heat source. The results obtained from the analytical model were be compared with the experimental ones and those available in the literature. The analytical results show a good correlation with the experimental ones available in the literature, thus proving the feasibility and efficiency of the analytical method for the simulation of the heat cycle for this welding process.
Resumo:
This study examines the complex hotel buyer decision process in front of the tourism distribution channels. Its objective is to describe the influence level of the tourism marketing intermediaries, mainly the travel agents and tour operators, over the hotel decision process by the buyer-tourist. The data collection process was done trough a survey with three hundred brazilian tourists hosted in nineteen hotels of Natal, capital of Rio Grande do Norte, Brazil. The data analysis was done using some multivariate statistic techniques as correlation analysis, multiple regression analysis, factor analysis and multiple discriminant analysis. The research characterizes the hotel services consumers profile and his trip, and identifying the distribution channels used by them. Furthermore, the research verifies the intermediaries influence exercised over hotel buyer decision process, looking for identify causality relations between the influence level and the buyer profile. Verifies that information about hotels available on internet reduces the probability that this influence can be practiced; however it was possible identifying those consumers considers this information complementary and non-substitutes than the information from intermediaries. The characteristics of the data do not allow indentifying the factors that constraint the intermediaries influence neither identifying discriminant functions of the specific distribution channel choice by consumers. The study concludes that consumers don t agree in have been influenced by intermediaries or don t know if they have, still considering important to consult them and internet doesn t substitute their function as information source