5 resultados para Light intensities
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Kerodon rupestris (rock cavy, mocó) is an endemic caviidae of Brazilian northeast that inhabits rocky places in the semi arid region. The aim of this study was to characterize the activity/rest rhythm of the rock cavy under 12:12 h LD cycle and continuous light. In the first stage, seven animals were submitted to two light intensities (LD; 250:0 lux and 400:0 lux; 40 days each intensity). In the second stage four males were kept for 40 days in LD (470:<1 lux), for 18 days in LL 470 lux (LL470) and for 23 days in red dim light below 1 lux (LL<1). In the third stage three males were initially kept in LD 12:12 h (450:<1 lux) and after that in LL with gradual increase in light intensity each 21 days (<1 lux LL<1; 10 lux-LL10; 160 lux LL160; 450 lux LL450). In the fourth stage it was analyzed the motor activity of 16 animals in the first 10 days in LD. Motor activity was continuously recorded by passive infrared movement sensors connected to a computer and totaled in 5 min bins. The activity showed circadian and ultradian rhythms and activity peaks at phase transitions. The activity and the rest occurred in the light as well as in the dark phase, with activity mean greater in the light phase for most of the animals. The light intensity influenced the activity/rest rhythm in the first three stages and in the first stage the activity in 400 lux increased in four animals and decreases in two. In the second stage, the tau for 3 animals in LL470 was greater than 24 h; in LL<1 it was greater than 24 h for one and lower for two. In the third stage the tau decreased with the light intensity increase for animal 8. During the first days in the experimental room, the animals did not synchronize to the LD cycle with activity and rest occurring in both phases. The results indicate that the activity/rest rhythm of Kerodon rupestris can be affected by light intensity and that the synchronization to the LD cycle results from entrainment as well as masking probably as a consequence of the action of two or more oscillators with low coupling strength
Resumo:
Advanced age may become a limiting factor for the maintenance of rhythms in organisms, reducing the capacity of generation and synchronization of biological rhythms. In this study, the influence of aging on the expression of endogenous periodicity and synchronization (photic and social) of the circadian activity rhythm (CAR) was evaluated in a diurnal primate, the marmoset (Callithrix jacchus). This study had two approaches: one with longitudinal design, performed with a male marmoset in two different phases: adult (three years) and older (9 y.o.) (study 1) and the second, a transversal approach, with 6 old (♂: 9.7 ± 2.0 y.o.) and 11 adults animals (♂: 4.2 ± 0.8 y.o.) (study 2). The evaluation of the photic synchronization involved two conditions in LD (natural and artificial illuminations). In study 1, the animal was subjected to the following stages: LD (12:12 ~ 350: ~ 2 lx), LL (~ 350 lx) and LD resynchronization. In the second study, the animals were initially evaluated in natural LD, and then the same sequence stages of study 1. During the LL stage in study 2, the vocalizations of conspecifics kept in natural LD on the outside of the colony were considered temporal cue to the social synchronization. The record of the activity was performed automatically at intervals of five minutes through infrared sensor and actimeters, in studies 1 and 2, respectively. In general, the aged showed a more fragmented activity pattern (> IV < H and > PSD, ANOVA, p < 0.05), lower levels of activity (ANOVA, p < 0.05) and shorter duration of active phase (ANOVA, p < 0.05) in LD conditions, when compared to adults. In natural LD, the aged presented phase delay pronounced for onset and offset of active phase (ANOVA, p < 0.05), while the adults had the active phase more adjusted to light phase. Under artificial LD, there was phase advance and greater adjustment of onset and offset of activity in relation to the LD in the aged (ANOVA, p < 0.05). In LL, there was a positive correlation between age and the endogenous period () in the first 20 days (Spearman correlation, p < 0.05), with prolonged held in two aged animals. In this condition, most adults showed free-running period of the circadian activity rhythm with < 24 h for the first 30 days and later on relative coordination mediated by auditory cues. In study 2, the cross-correlation analysis between the activity profiles of the animals in LL with control animals kept under natural LD, found that there was less social synchronization in the aged. With the resubmission to the LD, the resynchronization rate was slower in the aged (t-test; p < 0.05) and in just one aged animal there was a loss of resynchronization capability. According to the data set, it is suggested that the aging in marmosets may be related to: 1) lower amplitude and greater fragmentation of the activity, accompanied to phase delay with extension of period, caused by changes in a photic input, in the generation and behavioral expression of the CAR; 2) lower capacity of the circadian activity rhythm to photic synchronization, that can become more robust in artificial lighting conditions, possibly due to the higher light intensities at the beginning of the active phase due to the abrupt transitions between the light and dark phases; and 3) smaller capacity of non-photic synchronization for auditory cues from conspecifics, possibly due to reducing sensory inputs and responsiveness of the circadian oscillators to auditory cues, what can make the aged marmoset most vulnerable, as these social cues may act as an important supporting factor for the photic synchronization.
Resumo:
Advanced age may become a limiting factor for the maintenance of rhythms in organisms, reducing the capacity of generation and synchronization of biological rhythms. In this study, the influence of aging on the expression of endogenous periodicity and synchronization (photic and social) of the circadian activity rhythm (CAR) was evaluated in a diurnal primate, the marmoset (Callithrix jacchus). This study had two approaches: one with longitudinal design, performed with a male marmoset in two different phases: adult (three years) and older (9 y.o.) (study 1) and the second, a transversal approach, with 6 old (♂: 9.7 ± 2.0 y.o.) and 11 adults animals (♂: 4.2 ± 0.8 y.o.) (study 2). The evaluation of the photic synchronization involved two conditions in LD (natural and artificial illuminations). In study 1, the animal was subjected to the following stages: LD (12:12 ~ 350: ~ 2 lx), LL (~ 350 lx) and LD resynchronization. In the second study, the animals were initially evaluated in natural LD, and then the same sequence stages of study 1. During the LL stage in study 2, the vocalizations of conspecifics kept in natural LD on the outside of the colony were considered temporal cue to the social synchronization. The record of the activity was performed automatically at intervals of five minutes through infrared sensor and actimeters, in studies 1 and 2, respectively. In general, the aged showed a more fragmented activity pattern (> IV < H and > PSD, ANOVA, p < 0.05), lower levels of activity (ANOVA, p < 0.05) and shorter duration of active phase (ANOVA, p < 0.05) in LD conditions, when compared to adults. In natural LD, the aged presented phase delay pronounced for onset and offset of active phase (ANOVA, p < 0.05), while the adults had the active phase more adjusted to light phase. Under artificial LD, there was phase advance and greater adjustment of onset and offset of activity in relation to the LD in the aged (ANOVA, p < 0.05). In LL, there was a positive correlation between age and the endogenous period () in the first 20 days (Spearman correlation, p < 0.05), with prolonged held in two aged animals. In this condition, most adults showed free-running period of the circadian activity rhythm with < 24 h for the first 30 days and later on relative coordination mediated by auditory cues. In study 2, the cross-correlation analysis between the activity profiles of the animals in LL with control animals kept under natural LD, found that there was less social synchronization in the aged. With the resubmission to the LD, the resynchronization rate was slower in the aged (t-test; p < 0.05) and in just one aged animal there was a loss of resynchronization capability. According to the data set, it is suggested that the aging in marmosets may be related to: 1) lower amplitude and greater fragmentation of the activity, accompanied to phase delay with extension of period, caused by changes in a photic input, in the generation and behavioral expression of the CAR; 2) lower capacity of the circadian activity rhythm to photic synchronization, that can become more robust in artificial lighting conditions, possibly due to the higher light intensities at the beginning of the active phase due to the abrupt transitions between the light and dark phases; and 3) smaller capacity of non-photic synchronization for auditory cues from conspecifics, possibly due to reducing sensory inputs and responsiveness of the circadian oscillators to auditory cues, what can make the aged marmoset most vulnerable, as these social cues may act as an important supporting factor for the photic synchronization.
Resumo:
This study evaluated the degree of conversion (DC%) of one experimental and different brands of composite resins light-cured by two light sources (one LED and one argon laser). The percentage of unreacted C = C was determined from the ratio of absorbance intensities of aliphatic C = C (peak at 1637 cm−1) against internal standards before and after curing: aromatic C–C (peak at 1610 cm−1) except for P90, where %C = C bonds was given for C–O–C (883 cm−1) and C–C (1257 cm−1). ANOVA and Tukey’s test revealed no statistically significant difference among Z350 (67.17), Z250 (69.52) and experimental (66.61 ± 2.03) with LED, just among them and Evolu-X (75.51) and P90 (32.05) that showed higher and lower DC%, respectively. For the argon laser, there were no differences among Z250 (70.67), Z350 (69.60), experimental (65.66) and Evolu-X (73, 37), however a significant difference was observed for P90 (36.80), which showed lowest DC%. The light sources showed similar DC%, however the main difference was observed regarding the composite resins. The lowest DC% was observed for the argon laser. P90 showed the lowest DC% for both light-curing sources.
Resumo:
Objective: The aim of this study was to evaluate the degree of conversion and hardness of different composite resins, photo-activated for 40 s with two different light guide tips, fiber optic and polymer. Methods: Five specimens were made for each group evaluated. The percentage of unreacted carbon double bonds (% C═C) was determined from the ratio of absorbance intensities of aliphatic C═C (peak at 1637 cm−1) against internal standard before and after curing of the specimen: aromatic C-C (peak at 1610 cm−1). The Vickers hardness measurements were performed in a universal testing machine. A 50 gf load was used and the indenter with a dwell time of 30 seconds. The degree of conversion and hardness mean values were analyzed separately by ANOVA and Tukey’s test, with a significance level set at 5%. Results: The mean values of degree of conversion for the polymer and fiber optic light guide tip were statistically different (P<.001). The hardness mean values were statistically different among the light guide tips (P<.001), but also there was difference between top and bottom surfaces (P<.001). Conclusions: The results showed that the resins photo-activated with the fiber optic light guide tip promoted higher values for degree of conversion and hardness.