32 resultados para Ligas resistentes ao calor

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work aimed to develop a suitable magnetic system for administration by the oral route. In addition to that, it was intended to review the current uses of magnetic systems and the safety related to magnetic field exposure. Methods: Coprecipitation and emulsification/crosslinking were carried out in order to synthesize magnetite particles and to coat them, respectively. Results: According to literature review, it was found that magnetic particles present several properties such as magnetophoresis in magnetic field gradient, production of a surrounding magnetic field, and heat generation in alternated magnetic field. When the human organism is exposed to magnetic fields, several interaction mechanisms come into play. However, biological tissues present low magnetic susceptibility. As a result, the effects are not so remarkable. Concerning the development of a magnetic system for oral route, uncoated magnetite particles did undergo significant dissolution at gastric pH. On the other hand, such process was inhibited in the xylan-coated particles. Conclusions: Due to their different properties, magnetic systems have been widely used in biosciences. However, the consequent increased human exposure to magnetic fields has been considered relatively safe. Concerning the experimental work, it was developed a polymer-coated magnetic system. It may be very promising for administration by the oral route for therapy and diagnostic applications as dissolution at gastric pH hardly took place

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cobalt-chromium alloy is extensively used in the Odontology for the confection of metallic scaffolding in partial removable denture. During the last few years, it has been reported an increasing number of premature imperfections, with a few months of prosthesis use. The manufacture of these components is made in prosthetic laboratories and normally involves recasting, using parts of casting alloy and parts of virgin alloy. Therefore, the objective of the present study was to analyze the mechanical properties of a commercial cobalt-chromium alloy of odontological use after successive recasting, searching information to guide the dental prosthesis laboratories in the correct manipulation of the cobalt-chromium alloy in the process of casting and the possible limits of recasting in the mechanical properties of this material. Seven sample groups were confectioned, each one containing five test bodies, divided in the following way: G1: casting only with virgin alloy; G2: casting with 50% of the alloy of the G1 + 50% of virgin alloy; G3: casting with 50% of the alloy of the G2 + 50% of virgin alloy; G4: casting with 50% of the alloy of the G3 + 50% of virgin alloy; G5: 50% of alloy of the G4 + 50% of virgin alloy; G6: 50% of alloy of the G5 + 50% of virgin alloy and finally the G7, only with recasting alloy. The modifications in the mechanical behavior of the alloy were evaluated. Moreover, it was carried the micro structural characterization of the material by optic and electronic scanning microscopy, and X ray diffraction.and fluorescence looking into the correlatation of the mechanical alterations with structural modifications of the material caused by successive recasting process. Generally the results showed alterations in the fracture energy of the alloy after successive recasting, resulting mainly of the increasing presence of pores and large voids, characteristic of the casting material. Thus, the interpretation of the results showed that the material did not reveal significant differences with respect to the tensile strength or elastic limit, as a function of successive recasting. The elastic modulus increased from the third recasting cycle on, indicating that the material can be recast only twice. The fracture energy of the material decreased, as the number of recasting cycles increased. With respect to the microhardness, the statistical analyses showedno significant differences. Electronic scanning microscopy revealed the presence of imperfections and defects, resulting of the recasting process. X ray diffraction and fluorescence did not show alterations in the composition of the alloy or the formation of crystalline phases between the analyzed groups. The optical micrographs showed an increasing number of voids and porosity as the material was recast. Therefore, the general conclusion of this study is that the successive recasting of of Co-Cr alloys affects the mechanical properties of the material, consequently leading to the failure of the prosthetic work. Based on the results, the best recommendadition is that the use of the material should be limited to two recasting cycles

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nickel alloys are frequently used in applications that require resistance at high temperatures associated with resistance to corrosion. Alloys of Ni-Si-C can be obtained by means of powder metallurgy in which powder mixtures are made of metallic nickel powders with additions of various alloying carriers for such were used in this study SiC, Si3N4 or Si metal with graphite. Carbonyl Ni powder with mean particle size of 11 mM were mixed with 3 wt% of SiC powders with an average particle size of 15, 30 and 50 μm and further samples were obtained containing 4 to 5% by mass of SiC with average particle size of 15 μm. Samples were also obtained by varying the carrier alloy, these being Si3N4 powder with graphite, with average particle size of 1.5 and 5 μm, respectively. As a metallic Si graphite with average particle size of 12.5 and 5 μm, respectively. The reference material used was nickel carbonyl sintered without adding carriers. Microstructural characterization of the alloys was made by optical microscopy and scanning electron microscopy with semi-quantitative chemical analysis. We determined the densities of the samples and measurement of microhardness. We studied the dissociation of carriers alloy after sintering at 1200 ° C for 60 minutes. Was evaluated also in the same sintering conditions, the influence of the variation of average particle size of the SiC carrier to the proportion of 3% by mass. Finally, we studied the influence of variation of the temperatures of sintering at 950, 1080 and 1200 ° C without landing and also with heights of 30, 60, 120 and 240 minutes for sintering where the temperature was 950 °C. Dilatometry curves showed that the SiC sintered Ni favors more effectively than other carriers alloy analyzed. SiC with average particle size of 15 μm active sintering the alloy more effectively than other SiC used. However, with the chemical and morphological analyzes for all leagues, it was observed that there was dissociation of SiC and Si3N4, as well as diffusion of Si in Ni matrix and carbon cluster and dispersed in the matrix, which also occurred for the alloys with Si carriers and metallic graphite. So the league that was presented better results containing Si Ni with graphite metallic alloy as carriers, since this had dispersed graphite best in the league, reaching the microstructural model proposed, which is necessary for material characteristic of solid lubricant, so how we got the best results when the density and hardness of the alloy

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The metalceramic crowns are usually used in dentistry because they provide a resistant structure due to its metallic base and its aesthetics from the porcelain that recovers this structure. To manufacture these crowns, a series of stages should be accomplished in the prosthetic laboratories, and many variables can influence its success. Changes in these variables cause alterations in the metallic alloy and in the porcelain, so, as consequence, in the adhesion between them. The composition of the metal alloy can be modified by recasting alloys, a common practice in some prosthetic laboratories. The aim of this paper is to make a systematic study investigating metalceramic crowns as well as analyzing the effect of recasting Ni-Cr alloys. Another variable which can influence the mechanism of metalceramic union is the temperature used in firing porcelain procedure. Each porcelain has to be fired in a fixed temperature which is determined by the manufacturer and its change can cause serious damages. This research simulate situations that may occur on laboratory procedures and observe their consequences in the quality of the metalceramic union. A scanning eletron microscopy and an optic microscopy were accomplish to analyse the metal-ceramic interface. No differences have been found when remelting alloys were used. The microhardness were similar in Ni-Cr alloys casted once, twice and three times. A wettability test was accomplished using a software developed at the Laboratório de Processamento de Materiais por Plasma, on the Universidade Federal do Rio Grande do Norte. No differences were found in the contact angle between the solid surface (metallic substratum) and the tangencial plane to the liquid surface (opaque). To analyse if the temperature of porcelain firing procedure could influence the contact area between metal and porcelain, a variation in its final temperature was achieve from 980° to 955°C. Once more, no differences have been found

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal-ceramic interfaces are present in tricone drill bits with hard ceramic inserts for oil well drilling operations. The combination of actions of cutting, crushing and breaking up of rocks results in the degradation of tricone drill bits by wear, total or partial rupture of the drill bit body or the ceramic inserts, thermal shock and corrosion. Also the improper pressfitting of the ceramic inserts on the bit body may cause its total detachment, and promote serious damages to the drill bit. The improvement on the production process of metal-ceramic interfaces can eliminate or minimize some of above-mentioned failures presented in tricone drill bits, optimizing their lifetime and so reducing drilling metric cost. Brazing is a widely established technique to join metal-ceramic materials, and may be an excellent alternative to the common mechanical press fitting process of hard ceramic inserts on the steel bit body for tricone drill bit. Wetting phenomena plays an essential role in the production of metal/ceramic interfaces when a liquid phase is present in the process. In this work, 72Silver-28Copper eutectic based brazing alloys were melted onto zirconia, silicon nitride and tungsten carbide/Co substrates under high vacuum. Contact angle evolution was measured and graphically plotted, and the interfaces produced were analysed by SEM-EDX. The AgCu eutectic alloy did not wet any ceramic substrates, showing high contact angles, and so without chemical interaction between the materials. Better results were found for the systemns containing 3%wt of titanium in the AgCu alloy. The presence os titanium as a solute in the alloy produces wettable cand termodinamically stable compounds, increasing the ceramics wetting beahviour

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oil companies in the area in general are looking for new technologies that can increase the recovery factor of oil contained in reservoirs. These investments are mainly aimed at reducing the costs of projects which are high. Steam injection is one of these special methods of recovery in which steam is injected into the reservoir in order to reduce the viscosity of the oil and make it more mobile. The process assisted gravity drainage steam (SAGD) using steam injection in its mechanism, as well as two parallel horizontal wells. In this process steam is injected through the horizontal injection well, then a vapor chamber is formed by heating the oil in the reservoir and, by the action of gravitational forces, this oil is drained down to where the production well. This study aims to analyze the influence of pressure drop and heat along the injection well in the SAGD process. Numerical simulations were performed using the thermal simulator STARS of CMG (Computer Modeling Group). The parameters studied were the thermal conductivity of the formation, the flow of steam injection, the inner diameter of the column, the steam quality and temperature. A factorial design was used to verify the influence of the parameters studied in the recovery factor. We also analyzed different injection flow rates for the model with pressure drop and no pressure drop, as well as different maximum flow rates of oil production. Finally, we performed an economic analysis of the two models in order to check the profitability of the projects studied. The results showed that the pressure drop in injection well have a significant influence on the SAGD process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, most of the hydrocarbon reserves in the world are in the form of heavy oil, ultra - heavy or bitumen. For the extraction and production of this resource is required to implement new technologies. One of the promising processes for the recovery of this oil is the Expanding Solvent Steam Assisted Gravity Drainage (ES-SAGD) which uses two parallel horizontal wells, where the injection well is situated vertically above the production well. The completion of the process occurs upon injection of a hydrocarbon additive at low concentration in conjunction with steam. The steam adds heat to reduce the viscosity of the oil and solvent aids in reducing the interfacial tension between oil/ solvent. The main force acting in this process is the gravitational and the heat transfer takes place by conduction, convection and latent heat of steam. In this study was used the discretized wellbore model, where the well is discretized in the same way that the reservoir and each section of the well treated as a block of grid, with interblock connection with the reservoir. This study aims to analyze the influence of the pressure drop and heat along the injection well in the ES-SAGD process. The model used for the study is a homogeneous reservoir, semi synthetic with characteristics of the Brazilian Northeast and numerical simulations were performed using the STARS thermal simulator from CMG (Computer Modelling Group). The operational parameters analyzed were: percentage of solvent injected, the flow of steam injection, vertical distance between the wells and steam quality. All of them were significant in oil recovery factor positively influencing this. The results showed that, for all cases analyzed, the model considers the pressure drop has cumulative production of oil below its respective model that disregards such loss. This difference is more pronounced the lower the value of the flow of steam injection

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The resistance of aluminum and their alloys, to the corrosion phenomenon, in aqueous solutions, is a result of the oxide layer formed. However, the corrosion process in the aluminum alloy is associated with the presence a second phase of particles or the presence of chloride ions which promote the disruption of the oxide layer located producing the corrosion process. On the other hand, the term water produced is used to describe the water after the separation of the oil and gas in API separators. The volumes of produced water arrive around 5 more times to the volume of oil produced. The greatest feature of the water is the presence of numerous pollutants. Due to the increased volume of waste around the world in the current decade, the outcome and the effect of the discharge of produced water on the environment has recently become an important issue of environmental concern where numerous treatments are aimed at reducing these contaminants before disposal. Then, this study aims to investigate the electrochemical corrosion behavior of aluminum alloy 6060 in presence of water produced and the influence of organic components as well as chloride ions, by using the electrochemical techniques of linear polarization. The modification of the passive layer and the likely breakpoints were observed by atomic force microscopy (AFM). In the pit formation potential around -0.4 to -0.8 V/EAg/AgCl was observed that the diffusion of chloride ions occurs via the layer formed with the probable formation of pits. Whereas, at temperatures above 65 °C, it was observed that the range of potential for thepit formation was -0.4 to -0.5 V/EAg/AgCl. In all reactions, the concentration of Al(OH)3 in the form of a gel was observed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Staphylococcus aureus resistente à meticilina (MRSA) é um dos principais agentes de infecções associadas a serviços de saúde em todo o mundo. No Brasil, há a predominância de um clone de MRSA multirresistente denominando clone epidêmico brasileiro (CEB). Entretanto, novos clones nãomultirresistentes com alta virulência têm sido descritos em infecções comunitárias e hospitalares. O objetivo desse estudo foi realizar a caracterização fenotípica e genotípica de cepas de MRSA isoladas na cidade do Natal/RN. Inicialmente avaliamos 60 amostras de S. aureus quanto a resistência à meticilina através de diferentes técnicas fenotípicas, utilizando a detecção do gene mecA por PCR como padrão. O antibiograma de todas as cepas foi realizado utilizando 12 antimicrobianos conforme descrito pelo CLSI. As cepas de MRSA foram caracterizadas geneticamente através da tipagem do cassete cromossômico estafilocócico mec (SCCmec) e da eletroforese em campo elétrico alternado (PFGE). Dos 60 S. aureus estudados, 45 foram resistentes à meticilina. Observamos que para algumas cepas de MRSA os testes de triagem em ágar com 6μg/mL de oxacilina e difusão em meio sólido com oxacilina-1μg apresentaram dificuldades na sua interpretação. No entanto, todas as 45 amostras de MRSA, foram facilmente detectadas pelos testes com o disco de cefoxitina-30μg e pesquisa da PBP2a. A análise molecular das cepas de MRSA mostrou 8 padrões distintos de PFGE (A-H), com predominância do padrão A (73%), relacionado ao CEB. Estas carreavam o SCCmec tipo IIIA, e apresentaram uma considerável variedade de subtipos (A1-A16). Cinco cepas de MRSA portando SCCmec IV também foram xiv identificadas, três delas relacionadas geneticamente ao clone USA800 (Padrão B). Destas cinco, três (2 padrão F e 1 padrão B) foram altamente susceptíveis as drogas testadas, entretanto, dois outros isolados, padrão B, apresentaram multirresistência. As amostras restantes pertenciam a padrões de PFGE distintos dos clones internacionais predominantes em nosso continente. Para realização deste projeto de pesquisa, a metodologia exigiu a interação com pesquisadores de áreas como: infectologia, microbiologia e biologia molecular. Portanto, esta dissertação apresentou um caráter de multidisciplinaridade e transdiciplinaridade no seu desenvolvimento

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objetivo: Verificar a ação da cafeína no tempo de rendimento, a taxa de esforço percebido (RPE), os níveis plasmáticos de glicose, sódio e potássio, a temperatura timpânica (Tt), o peso corporal (PC), freqüência cardíaca (FC) e concentração urinária da cafeína com a ingestão de doses de 5 e 9 mg/kg de cafeína e placebo, em provas ciclísticas sob condições de alto risco térmico. Métodos: Foram estudados 8 ciclistas treinados e aclimatizados em 3 provas de 45 km utilizando o modelo experimental e duplo-cego com randomização intra-sujeitos. Resultados: Não foram observadas diferenças significativas entre as variáveis avaliadas, entretanto o tempo de rendimento e a RPE foram menores com as doses de 5 e 9 mg/kg de cafeína que com a dose placebo. Conclusões: Estes dados indicam que as condições de calor e umidade podem ser suficientes para mascarar o benefício ergogênico da cafeína, entretanto deve-se considerar que a cafeína pode exercer influencia sobre a percepção subjetiva de esforço podendo levar à redução dos sinais de fadiga durante o exercício e conseqüente melhora do desempenho esportivo

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Through this research is detailed the Brazilian seismic code focused on concrete projects design related to seismic engineering. At the beginning of the research is debated the fundaments of the seismic effects, the influence factors to the development of seismic effects and also relates the main data registration happened in Brazil. The second step is study the Brazilian seismic code explaining all the concepts related to it and does a compilation to the most important international seismic code. At this research is developed the designing of a building submitted to horizontal equivalent seismic forces and the modal process based on the answer spectrum based on the brazilin seismic code. It was also developed the design of a commercial building submitted to seismic loads based on the Brazilian code answer spectrum and compared to the same building submitted to wind loads.The research also focus on projects conception and detailing of seismic engineering Project design. At the study of seismic engineering it was concluded that seismic effects require special focus on concrete structures design, proving that is the essential consider the seismic effects

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A serious problem that affects an oil refinery s processing units is the deposition of solid particles or the fouling on the equipments. These residues are naturally present on the oil or are by-products of chemical reactions during its transport. A fouled heat exchanger loses its capacity to adequately heat the oil, needing to be shut down periodically for cleaning. Previous knowledge of the best period to shut down the exchanger may improve the energetic and production efficiency of the plant. In this work we develop a system to predict the fouling on a heat exchanger from the Potiguar Clara Camarão Refinery, based on data collected in a partnership with Petrobras. Recurrent Neural Networks are used to predict the heat exchanger s flow in future time. This variable is the main indicator of fouling, because its value decreases gradually as the deposits on the tubes reduce their diameter. The prediction could be used to tell when the flow will have decreased under an acceptable value, indicating when the exchanger shutdown for cleaning will be needed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The processing of materials through plasma has been growing enough in the last times in several technological applications, more specifically in surfaces treatment. That growth is due, mainly, to the great applicability of plasmas as energy source, where it assumes behavior thermal, chemical and/or physical. On the other hand, the multiplicity of simultaneous physical effects (thermal, chemical and physical interactions) present in plasmas increases the complexity for understanding their interaction with solids. In that sense, as an initial step for the development of that subject, the present work treats of the computational simulation of the heating and cooling processes of steel and copper samples immersed in a plasma atmosphere, by considering two experimental geometric configurations: hollow and plane cathode. In order to reach such goal, three computational models were developed in Fortran 90 language: an one-dimensional transient model (1D, t), a two-dimensional transient model (2D, t) and a two-dimensional transient model (2D, t) which take into account the presence of a sample holder in the experimental assembly. The models were developed based on the finite volume method and, for the two-dimensional configurations, the effect of hollow cathode on the sample was considered as a lateral external heat source. The main results obtained with the three computational models, as temperature distribution and thermal gradients in the samples and in the holder, were compared with those developed by the Laboratory of Plasma, LabPlasma/UFRN, and with experiments available in the literature. The behavior showed indicates the validity of the developed codes and illustrate the need of the use of such computational tool in that process type, due to the great easiness of obtaining thermal information of interest

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal ceramic restorations matches aesthetic and strength, and in your making occurs an interface oxide layer, wetting resulting and atomic and ionic interactions resulting between metal, oxide and porcelain. However, frequent clinical fails occurs in this restoration type, because lost homogeneous deposition oxide layer and lost interface bond. Thus, in this study, thought depositate homogeneous oxide films above Ni-Cr samples surfaces polite previously, at plasma oxide environment. Six samples was oxided at 300 and 400ºC at one hour, and two samples was oxided in a comum chamber at 900ºC, and then were characterized: optical microscopic, electronic microscopic, micro hardness, and X ray difratometry. Colors stripes were observed at six samples plasma oxided and a grey surface those comum oxided, thus like: hardness increase, and several oxides from basic metals (Ni-Cr)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The search for sustainable technologies that can contribute to reduce energy consumption is a great challenge in the field of insulation materials. In this context, composites manufactured from vegetal sources are an alternative technology. The principal objectives of this work are the development and characterization of a composite composed by the rigid polyurethane foam derived from castor oil (commercially available as RESPAN D40) and sisal fibers. The manufacture of the composite was done with expansion controlled inside a closed mold. The sisal fibers where used in the form of needlepunched nonwoven with a mean density of 1150 g/m2 and 1350 g/m2. The composite characterization was performed through the following tests: thermal conductivity, thermal behavior, thermo gravimetric analysis (TG/DTG), mechanical strength in compression and flexural, apparent density, water absorption in percentile, and the samples morphology was analyzed in a MEV. The density and humidity percentage of the sisal fiber were also determined. The thermal conductivity of the composites was higher than the pure polyurethane foam, the addition of nonwoven sisal fibers will become in a higher level of compact foam, reducing empty spaces (cells) of polyurethane, inducing an increase in k value. The apparent density of the composites was higher than pure polyurethane foam. In the results of water absorption tests, was seen a higher absorption percent of the composites, what is related to the presence of sisal fibers which are hygroscopic. From TG/DTG results, with the addition of sisal fibers reduced the strength to thermal degradation of the composites, a higher loss of mass was observed in the temperature band between 200 and 340 °C, related to urethane bonds decomposition and cellulose degradation and its derivatives. About mechanical behavior in compression and flexural, composites presented a better mechanical behavior than the rigid polyurethane foam. An increase in the amount of sisal fibers induces a higher rigidity of the composites. At the thermal behavior tests, the composites were more mechanically and thermally resistant than some materials commonly used for thermal insulation, they present the same or better results. The density of nonwoven sisal fiber had influence over the insulation grade; this means that, an increaser in sisal fiber density helped to retain the heat