1 resultado para Lex Frisionum.

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To evaluate in vitro the surface roughness and bacterial adhesion of nanoparticle composites, after being subjected to different finishing and polishing systems. Materials and Methods: 66 specimens were prepared, and 30 with Filtek Z350 XT (3M ESPE, USA) and 30 with the resin IPS Empress Direct (Ivoclar Vivadent, USA), divided into 6 groups (n = 10 ). Six specimens were prepared for analysis in scanning electron microscopy (SEM) .Each kind of resin was subjected to finishing and polishing systems: Sof-Lex Pop-On discs (3M ESPE, USA) and AstropolTM system (Ivoclar Vivadent , USA), featuring the experimental group. The control group did not undergo any kind of finishing and polishing technique. The average roughness (Ra) in both groups was measured using a roughness in the setting of 0.25 mm (cut off) and surface images obtained with photomicrographs taken with a scanning electron microscope (SEM) magnified 500 times. Bacterial adherence was evaluated by determining the absorbance (OD) of the suspension of adhered cells by spectrophotometer at 570 nm. The results were submitted for analyzed with 2-way ANOVA at α=.05 and Tukey multiple comparison tests. Results: Statistically significant differences were found between the groups in terms of roughness and bacterial adhesion. Filtek Z350 XT for resin were no differences between the tested finishing and polishing systems, where the system of lowest surface roughness was the Sof-Lex Pop-On. To the resin IPS Empress Direct, the finishing and polishing system Astropol, had lower results of surface roughness. As for bacterial adhesion, the lowest optical density value for Filtek Z350 XT was for the group that used the finishing and polishing system Sof-Lex Pop-On and the resin IPS Empress Direct the group that used the Astropol system. In addition, there was a positive correlation between surface roughness and bacterial adhesion on polished surfaces (r = 0.612) Conclusions: surface roughness and bacterial adhesion are closely related. The finishing and polishing Sof-Lex Pop-On system is more suitable for nanoparticulate Filtek Z350 XT and the finishing and polishing system Astropol for resin nanohíbrida IPS Empress Direct.