2 resultados para Level of service.
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The decrease in crime is one of the core issues that cause concern in society today. This study aims to propose improvements to public safety from the choice of points to the location of police units, ie the points which support the car and the police. For this, three models were developed in order to assist decision making regarding the best placement of these bases. The Model of Police Units Routing has the intention to analyze the current configuration of a given region and develop optimal routes for round preventative. The Model of Allocation and Routing for New Police Units (MARNUP) used the model of facility location called p-median weighted and traveling salesman problem (TSP) combined aiming an ideal setting for regions that do not yet have support points or to assess how far the distribution is present in relation to that found in solution. The Model Redefinition and Routing Unit Police (MRRUP) seek to change the current positioning taking into account the budgetary constraints of the decision maker. To verify the applicability of these models we used data from 602 points to instances of police command that is responsible for the capital city of Natal. The city currently has 31 police units for 36 of these 19 districts and police have some assistance. This reality can lead to higher costs and higher response times for answering emergency calls. The results of the models showed that in an ideal situation it is possible to define a distance of 500 km/round, whereas in this 900 km are covered by approximately round. However, a change from three-point lead reduced to 700 km / round which represents a decrease of 22% in the route. This reduction should help improve response time to emergency care, improving the level of service provided by the increase of solved cases, reducing police shifts and routing preventive patrols
Resumo:
This work searches to offer a model to improve spare parts stock management for companies of urban passenger transport by bus, with the consequent progress in their maintenance management. Also known as MRO items (Maintenance, Repair and Operations), these spare parts, according their consumption and demand features, cost, criticity to operation, lead-time, quantity of suppliers, among other parameters, shouldn´t have managed their inventory like normal production items (work in process e final products), that because their features, are managed by more predictable models based, for example, in economic order quantity. In the case specifically of companies of urban passenger transport by bus, items MRO have significant importance in their assets and a bad management of these inventories can cause serious losses to company, leading it even bankrupticy business, in more severe situations which missing spare part provokes vehicles shutdown indefinitely. Given slight attention to the issue, which translates in little literature available about it when compared to that literature about normal items stocks, and due the fact that MRO items be critical to bus urban transport of passengers companies´, it is necessary, so, deepen in this theme searching to give technical and scientific subsidies to companies that work, in many times, empirically, with these so decisive inputs to their business. As a typical portfolio problem, in which there are n items, separated into critical and noncritical, while competing for the same resource, it was developed a new algorithm to aid in a better inventory management of spare parts used only in corrective maintenance (whose failures are unpredictable and random), by analyzing the cost-benefit ratio, which compares the level of service versus cost of each item. The model was tested in a company of urban passenger transport by bus from the city of Natal, who anonymously provided their real data to application in this work