16 resultados para Levedura cervejeira
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The acquisition of oligosaccharides from chitosan has been the subject of several studies in the pharmaceutical, biochemical, food and medical due to functional properties of these compounds. This study aimed to boost its production of chitooligosaccharides (COS) through the optimization of production and characterization of chitosanolytic enzymes secreted by microorganisms Paenibacillus chitinolyticus and Paenibacillus ehimensis, and evaluating the antioxidant potential of the products obtained. In the process of optimizing the production of chitosanase were employed strategies Fractional Factorial Experimental Design and Central Composite Rotatable Design. The results identified the chitosan, peptone and yeast extract as the components that influenced the production of chitosanase by these microorganisms. With the optimization of the culture media was possible to obtain an increase of approximately 8.1 times (from 0.043 to 0.35 U.mL U.mL-1) and 7.6 times (from 0.08 U.mL-1 to 0.61 U.mL-1) in the enzymatic activity of chitosanase produced by P. chitinolyticus and P. ehimensis respectively. Enzyme complexes showed high stability in temperature ranges between 30º and 55º C and pH between 5.0 and 9.0. Has seen the share of organic solvents, divalent ions and other chemical agents on the activity of these enzymes, demonstrating high stability of these crude complexes and dependence of Mn2+. The COS generated showed the ability of DPPH radical scavenging activity, reaching a maximum rate of scavenging of 61% and 39% when they were produced with enzymes of P. ehimensis and P. chitinolyticus respectively. The use of these enzymes in raw form might facilitate its use for industrial applications
Resumo:
Dermatomycoses are fungal infections that attack the skin, hair and nails, in addition to the mucosal and cutaneous-mucosal zones. Objective: Observe the frequency of dermatomycoses, identify etiological agents and establish an association between the results and sex. Age, collection site, time and lesion location. Methods: Between February, 2002 and December, 2004, samples were collected from patients at Giselda Trigueiro Hospital in Natal, Brazil, by lesion scraping and hair removal, following 70% alcohol disinfection, and submitted to direct and culture examination. Results: Of the 817 lesions collected, 325 (39.8%) were fungus positive, with the hair collection site yielding the highest number of positive results (65.8%) and the scalp and hair representing the most frequent lesion sites (65.9%). Negative results occurred mainly in the lower limbs (78.6%). Of the species identified, 55.9% were yeasts, 41.6% dermatophytes and 2.5% Fusarium spp. Non-albicans Candida was the most isolated yeast (43.3%), mainly in females (61.7%) over the age of 40 years (56.4%). T. rubrum was the most isolated dermatophyte (67.9%),notably in males (59.2%) in the 0-20 age group (44.7%). With respect to collection site, 73.9% of the dermatophytes were present in the skin and 61.1% of the yeasts in the nails. When assessing the collection site, the inguinocrural regional was 22.6% positive for dermatophytes, and the nails and hands, 41.8% for yeasts. Conclusions: The results obtained verified that: most of the positive lesions were found in the hair, whereas skin and nail lesions yielded more negative results; T. rubrum was the most isolated dermatophyte and non-albicans candida the most commonly found yeast; positivity was greater in males in the 0-20 year age group at the skin site and in the inguinocrural region, while yeasts were more frequent in females in the over-40 age group at the nail sites
Resumo:
Vulvovaginal candidiasis (VVC) is one of the most common causes of vaginitis and affects about 75% of women of reproductive age. The majority of cases (80 to 90%) are due to C. albicans, the most virulent species of the genus Candida. Virulence attributes are scarcely investigated and the source of infection remains uncertain. Objective: This study aimed to evaluate the virulence factors and genotypes of clinical isolates of C. albicans sequentially obtained from the anus and vagina of patients with sporadic and recurrent VVC. Materials and methods: We analyzed 62 clinical isolates of C. albicans (36 vaginal and 26 anal strains). Direct examination of vaginal and anal samples and colony forming units (CFU) counts were performed. Yeasts were identified using the chromogenic media CHROMagar Candida® and by classical methodology, and phenotypically characterized regarding to virulence factors, including the ability to adhere to epithelial cells, proteinase activity, morphogenesis and biofilm formation. The genotypes of the strains were investigated with ABC genotyping, microsatellite genotyping with primer M13 and RAPD. Results: We found 100% agreement between direct examination and culture of vaginal samples. Filamentous forms were present in most of the samples of vaginal secretion, which presented CFU counts significantly higher than the samples of anal secretion. There was no statistically significant difference between virulence factors of infecting vaginal isolates and those presented by colonizing anal isolates; as well as for the comparison of the vaginal isolates from patients with different clinical conditions (sporadic or recurrent VVC). There was a decrease in the ability to adhere to HBEC, morphogenesis and biofilm formation of the vaginal isolates during the progress of infection. There was an association between the ability to express different virulence factors and the clinical manifestations presented by the patients. Genotype A was the most prevalent (93.6%), followed by genotype C (6.4%). We found maintenance of the same ABC genotype and greater prevalence of microevolution for the vaginal strains of C. albicans sequentially obtained. Vaginal and anal isolates of C. albicans obtained simultaneously from the same patient presented the same ABC genotype and high genetic relatedness. Conclusion: It is noteworthy that the proliferation of yeast and bud-to-hypha transition are important for the establishment of CVV. The expression of virulence factors is important for the pathogenesis of VVC, although it does not seem to be determinant in the transition from colonization to infection or to the installation of recurrent condition. Genotype A seems to be dominant over the others in both vaginal and anal isolates of patients with VVC. The most common scenario was microevolution of the strains of C. albicans in the vaginal environment. It is suggested that the anal reservoir constituted a possible source of vaginal infection, in most cases assessed
Resumo:
Candida albicans is a diploid yeast that in some circumstances may cause oral or oropharyngeal infections. The investigation of natural products is mandatory for the discovery of new targets for antifungal drugs development. This study aimed to determine the genotypes of 48 clinical isolates of C. albicans obtained from the oral cavity of kidney transplant patients from two distinct geographic regions of Brazil. In addition, we investigated three virulence factors in vitro: phospholipase activity, morphogenesis and the ability to evade from polymorphonuclear neutrophils. The expression of these virulence factors in vitro was also investigated in the presence of the crude extract of Eugenia uniflora. The genotype A was the most prevalent (30 isolates; 62.5%), followed by genotype C (15 isolates; 31.5%) and genotype B (3 isolates; 6.25%). When microsatellite technique with primer M13 was applied, 80% of the isolates from the South were placed within the same cluster. All Genotype C strains were grouped together within two different clusters. Genotype C was considered more resistant to PMNs attack than genotypes A and B. Strains isolated from the South of Brazil showed higher ability to combat PMNs phagocytosis. We found a high rate of genotype C strains isolated from the oral cavity of this group of patients. The crude extract of E. uniflora inhibited proper hypha formation and phagocytosis by PMNs, but had no significant effect on phospholipase activity. This study characterized oral C. albicans strains isolated from kidney transplant recipients and will contribute for the better understanding of the pathogenesis and alternative therapeutics for oral candidiasis
Resumo:
The liquid of the rind of green coconut (LCCV), an effluent stream from the industrial processing of green coconut rind, is rich in sugars and is a suitable feedstock for fermentation. The first step of this study was to evaluate the potential of natural fermentation of LCCV. As the literature did not provide any information about LCCV and due to the difficulty of working with such an organic effluent, the second step was to characterize the LCCV and to develop a synthetic medium to explore its potential as a bioprocess diluent. The third step was to evaluate the influence of initial condensed and hydrolysable tannins on alcoholic fermentation. The last step of this work was divided into several stages: in particular to evaluate (1) the influence of the inoculum, temperature and agitation on the fermentation process, (2) the carbon source and the use of LCCV as diluent, (3) the differences between natural and synthetic fermentation of LCCV, in order to determine the best process conditions. Characterization of LCCV included analyses of the physico-chemical properties as well as the content of DQO, DBO and series of solids. Fermentation was carried out in bench-scale bioreactors using Saccharomyces cerevisiae as inoculum, at a working volume of 5L and using 0.30% of soy oil as antifoam. During fermentations, the effects of different initial sugars concentrations (10 - 20%), yeast concentrations (5 and 7.5%), temperatures (30 - 50°C) and agitation rates (400 and 500 rpm) on pH/sugars profiles and ethanol production were evaluated. The characterization of LCCV demonstrated the complexity and variability of the liquid. The best conditions for ethanol conversion were (1) media containing 15% of sugar; (2) 7.5% yeast inoculum; (3) temperature set point of 40°C and (4) an agitation rate of 500 rpm, which resulted in an ethanol conversion rate of 98% after 6 hours of process. A statistical comparison of results from natural and synthetic fermentation of LCCV showed that both processes are similar
Resumo:
Extended storage of refrigerated milk can lead to reduced quality of raw and processed milk, which is a consequence of the growth and metabolic activities of psychrotrophic bacteria, able to grow under 7oC or lower temperatures. Although most of these microorganisms are destroyed by heat treatment, some have the potential to produce termoresistant proteolytic and lipolytic enzymes that can survive even UHT processing and reduce the processed products quality. Recently, the IN 51 determineds that milk should be refrigerated and stored at the farm what increased the importance of this group of microorganisms. In this work, psychrotrophic bacteria were isolated from 20 communitarian bulk tanks and 23 individual bulk tanks from dairy farms located at Zona da Mata region of Minas Gerais State and from southeastern Rio de Janeiro. Selected milk dilutions were plated on standard agar and after incubation for 10 days at 7oC, five colonies were isolated, firstly using nutrient agar and after using McConkey agar for 24 hours at 21oC. The isolates were identified by morphology, Gram stain method, catalase production, fermentative/oxidative metabolism and by API 20E, API 20NE, API Staph, API Coryne or API 50 CH (BioMerieux). In order to ensure reproductibility, API was repeated for 50% of the isolates. Species identification was considered when APILAB indexes reached 75% or higher. 309 strains were isolated, 250 Gram negative and 59 Gram positive. 250 Gram negative isolates were identified as: Acinetobacter spp. (39), Aeromonas spp. (07), A. Hydrophila (16), A. sobria (1), A. caviae (1), Alcaligenes feacalis (1), Burkholderia cepacia (12), Chryseomonas luteola (3), Enterobacter sp. (1), Ewingella americana(6), Hafnia alvei (7), Klebsiella sp. (1), Klebsiella oxytoca (10), Yersinia spp. (2), Methylobacterium mesophilicum (1), Moraxella spp. (4), Pantoea spp. (16), Pasteurella sp. (1), Pseudomonas spp. (10), P. fluorescens (94), P. putida (3), Serratia spp. (3), Sphigomonas paucomobilis (1). Five isolates kept unidentified. Pseudomonas was the predominant bacteria found (43%) and P. fluorescens the predominant species (37.6%), in accordance with previous reports. Qualitative analysis of proteolytic and lipolytic activity was based on halo formation using caseinate agar and tributirina agar during 72 hours at 21oC and during 10 days at 4°C, 10oC and 7°C. Among 250 Gram negative bacteria found, 104 were identified as Pseudomonas spp. and 60,57% of this group showed proteolytic and lipolytic acitivities over all four studied temperatures. 20% of Acinetobacter, Aeromonas, Alcaligenes, Burkholderia, Chryseomonas, Methylobacterium, Moraxella presented only lipolytic activity. Some isolates presented enzymatic activity in one or more studied temperatures. Among Gram positive bacteria, 30.51% were proteolytic and lipolytic at 10oC, 8.47% were proteolytic at 7oC, 10oC, and 21oC, 8.47% were proteolytic at all studied temperatures (4oC, 7oC, 10oC and 21oC) and 3.38% were proteolytic only at 21oC. At 4oC, only one isolate showed proteolytic activity and six isolates were lipolytic. In relation to Gram negative microorganisms, 4% were proteolytic and lipolytic at 7oC, 10oC and 21oC, 10% were proteolytic at 10oC and 4.4% were lipolytic at 4oC, 7oC, 10oC and 21oC, while 6.4% of all isolates were proteolytic and lipolytic at 10oC and 21oC as well as lipolytic at 4oC and 7oC. These findings are in accordance with previous researches that pointed out Pseudomonas as the predominant psycrotrophic flora in stored refrigerated raw milk
Resumo:
Among the main challenges in the beer industrial production is the market supply at the lowest cost and high quality, in order to ensure the expectations of customers and. consumers The beer fermentation stage represents approximately 70% of the whole time necessary to its production, having a obligatoriness of strict process controls to avoid becoming bottleneck in beer production. This stage is responsible for the formation of a series of subproducts, which are responsible for the composition of aroma/bouquet existing in beer and some of these subproducts, if produced in larger quantities, they will confer unpleasant taste and odor to the final product. Among the subproducts formed during the fermentation stage, total vicinal diketones is the main component, since it is limiting for product transfusion to the subsequent steps, besides having a low perception threshold by the consumer and giving undesirable taste and odor. Due to the instability of main raw materials quality and also process controls during fermentation, the development of alternative forms of beer production without impacting on total fermentation time and final product quality is a great challenge to breweries. In this work, a prior acidification of the pasty yeast was carried out, utilizing for that phosphoric acid, food grade, reducing yeast pH of about 5.30 to 2.20 and altering its characteristic from flocculent to pulverulent during beer fermentation. An increase of six times was observed in amount of yeast cells in suspension in the second fermentation stage regarding to fermentations by yeast with no prior acidification. With alteration on two input variables, temperature curve and cell multiplication, which goal was to minimize the maximum values for diketones detected in the fermenter tank, a reduction was obtained from peak of formed diacetyl and consequently contributed to reduction in fermentation time and total process time. Several experiments were performed with those process changes in order to verify the influence on the total fermentation time and total vicinal diketones concentration at the end of fermentation. This experiment reached as the best production result a total fermentation time of 151 hours and total vicinal diketone concentration of 0.08 ppm. The mass of yeast in suspension in the second phase of fermentation increased from 2.45 x 106 to 16.38 x 106 cells/mL of yeast, which fact is key to a greater efficiency in reducing total vicinal diketones existing in the medium, confirming that the prior yeast acidification, as well as the control of temperature and yeast cell multiplication in fermentative process enhances the performance of diketones reduction and consequently reduce the total fermentation time with diketones concentration below the expected value (Max: 0.10 ppm)
Resumo:
A chemical process optimization and control is strongly correlated with the quantity of information can be obtained from the system. In biotechnological processes, where the transforming agent is a cell, many variables can interfere in the process, leading to changes in the microorganism metabolism and affecting the quantity and quality of final product. Therefore, the continuously monitoring of the variables that interfere in the bioprocess, is crucial to be able to act on certain variables of the system, keeping it under desirable operational conditions and control. In general, during a fermentation process, the analysis of important parameters such as substrate, product and cells concentration, is done off-line, requiring sampling, pretreatment and analytical procedures. Therefore, this steps require a significant run time and the use of high purity chemical reagents to be done. In order to implement a real time monitoring system for a benchtop bioreactor, these study was conducted in two steps: (i) The development of a software that presents a communication interface between bioreactor and computer based on data acquisition and process variables data recording, that are pH, temperature, dissolved oxygen, level, foam level, agitation frequency and the input setpoints of the operational parameters of the bioreactor control unit; (ii) The development of an analytical method using near-infrared spectroscopy (NIRS) in order to enable substrate, products and cells concentration monitoring during a fermentation process for ethanol production using the yeast Saccharomyces cerevisiae. Three fermentation runs were conducted (F1, F2 and F3) that were monitored by NIRS and subsequent sampling for analytical characterization. The data obtained were used for calibration and validation, where pre-treatments combined or not with smoothing filters were applied to spectrum data. The most satisfactory results were obtained when the calibration models were constructed from real samples of culture medium removed from the fermentation assays F1, F2 and F3, showing that the analytical method based on NIRS can be used as a fast and effective method to quantify cells, substrate and products concentration what enables the implementation of insitu real time monitoring of fermentation processes
Resumo:
Metabolic flux analysis (MFA) is a powerful tool for analyzing cellular metabolism. In order to control the growth conditions of a specific organism, it is important to have a complete understanding of its MFA. This would allowed us to improve the processes for obtaining products of interest to human and also to understand how to manipulate the genome of a cell, allowing optimization process for genetic engineering. Streptomyces olindensis ICB20 is a promising producer of the antibiotic cosmomycin, a powerful antitumor drug. Several Brazilian researchers groups have been developing studies in order to optimize cosmomycin production in bioreactors. However, to the best of our knowledge, nothing has been done on metabolic fluxes analysis field. Therefore, the aim of this work is to identify several factors that can affect the metabolism of Streptomyces olindensis ICB20, through the metabolic flux analysis. As a result, the production of the secondary metabolite, cosmomycin, can be increased. To achieve this goal, a metabolic model was developed which simulates a distribution of internal cellular fluxes based on the knowledge of metabolic pathways, its interconnections, as well as the constraints of microorganism under study. The validity of the proposed model was verified by comparing the computational data obtained by the model with the experimental data obtained from the literature. Based on the analysis of intracellular fluxes, obtained by the model, an optimal culture medium was proposed. In addition, some key points of the metabolism of Streptomyces olindensis were identified, aiming to direct its metabolism to a greater cosmomycin production. In this sense it was found that by increasing the concentration of yeast extract, the culture medium could be optimized. Furthermore, the inhibition of the biosynthesis of fatty acids was found to be a interesting strategy for genetic manipulation. Based on the metabolic model, one of the optimized medium conditions was experimentally tested in order to demonstrate in vitro what was obtained in silico. It was found that by increasing the concentration of yeast extract in the culture medium would induce to an increase of the cosmomycin production
Resumo:
In this work a Plackett-Burman Design with 8 factors and 12 trials in 2 levels with 3 repetitions at the center point was used in order to investigate the influence of the concentration of chitosan, peptone, yeast extract, NaNO3, K2HPO4, KCl, MgSO4.7H2O and FeSO4 on chitosanase production by Metarhizium anisopliae. Runs were carried out using submerged discontinuous cultivation for enzyme production. The results of the Plackett & Burman Design showed that only two factors, chitosan concentration as well as FeSO4 had influence on chitosanolytic activity, while the increase in concentration of other factors not contributed significantly to the quitosanolítica activity. Cultivation medium optimization for enzyme production was carried out using a Composite Central Design, with the most important factors for chitosanolytic activity (chitosan and FeSO4), in accordance with Plackett & Burman Design, and keeping the other nutrients in their minimum values. On this other design, it was taken the highest limit in Plackett & Burman Design as the lowest limit (-1) to FeSO4 factor. The results showed that the enzyme production was favoured by increasing the chitosan concentration and by decreasing FeSO4. Maximum production for chitosanolytic activity was about 70.0 U/L and was reached in only 18 h of fermentation, a result about twenty-eight times greater than a former study using the same microorganism (about 2.5 U/L at 48 h)
Resumo:
The Anguiliformes is constituted by 15 families, 141 sorts and 737 species. In this group eight families possess at least one karyotyped species, where a prevalence of karyotypes with 2n=38 is evidenced chromosomes and high NF, apparently basal for the Anguiliformes. The only family who shows a different karyotypic pattern from the others is the Muraenidae family. In this, of the eight species already described, all of them present 2n=42 chromosomes. Despite the dimension of this Order, few species present karyotypics descriptions. In the present work, a species of Ophichthidae, Myrichthys ocellatus (2n=38, 8m+14sm+10st+6a, NF=70) and three species of Muraenidae, Enchelycore nigricans (2n=42, 6m+8sm+12st+16a, NF=68), Gymnothorax miliaris (2n=42, 14m+18sm+10st, NF=84), Gymnothorax vicinus (2n=42, 8m+6sm+28a, NF=56) and Muraena pavonina (2n=42, 6m+4sm+32a, NF=52), collected in the coast of the Rio Grande do Norte state, Saint Peter and Paul Rocks and in the coast of Bahia state were analyzed. Mitotics chromosomes had been gotten through mitotic stimulation with yeasts. Among the analyzed species, it is observed the presence of characteristic large metacentric chromosomic pairs (≅10µm). As for the structural standard, heterochromatics regions in these species in centromeric position of the majority of the chromosomic pairs and simple ribosomal sites had been evidenced. For the Ophichthidae family, the gotten data corroborate the hypothesis of karyotypic diversification mediated by the occurrence of pericentrics inversions and robertsonians rearrangements, while in the Muraenidae, the identification of larger chromosomic values (2n=42), suggests derived karyotypes, possibly caused by possible chromosomic fissions
Resumo:
Enzymes have been widely used in biosynthesis/transformation of organic compounds in substitution the classic synthetic methods. This work is the first writing in literature of enzymatic synthesis for attainment the biossurfactants, the use glucose sucrose, ricinoleic acid e castor oil as substratum, and as biocatalyst, used immobilized lipase Thermomyces lanuginose, Rhizomucor miehei and the Candida antarctica lipase B; alkaline protease and neutral protease from Bacillus subtillis and yeast Saccharomyces cerevisiaeI. The analysis of HPLC (high performance liquid chromatography) showed that highest conversions were reached of used the alkaline protease from Bacillus subtillis. Laboratory tests, to evaluate the applicability, indicated that the produced biosurfactantes had good stability in presence of salts (NaCl) and temperature (55 e 25°C), they are effective in the reduction of the superficial tension and contac angle, but they have little foaming capacity, when compared with traditional detergents. These results suggest that the prepared surfactants have potential application as wetting agent and perforation fluid stabilizer
Resumo:
The increase in the incidence of fungal infections due to the drug-resistance or to the number of patients with immune alterations such as AIDS, chemotherapy or organ transplantation, has done the research necesseray for new antifungal drugs. The species from Northeastern Brazil may become an important source of innovative natural molecules. To evaluate the antifungal activity of 10 medicinal plants from Northeastern Brazil, traditionally used as antimicrobial agents, 30 crude extracts (CE) were tested in vitro against four standard species of Candida spp. The CE most promising of these plants were evaluated against yeasts of the oral cavity of kidney transplant patients and through a bioassay-guided fractionation. The extracts form leaves of E. uniflora, the stem bark of L. ferrea and leaves of P. guajava showed significant activity against all yeasts evaluated, with MIC values between 15.62 and 62.5 μg/mL. E. uniflora also showed fungicidal properties against all yeasts, especially against Candida dubliniensis. In patients with immune systems compromised, such as transplanted, oral candidiasis manifests mainly due to immunosuppressive therapy, and resistance to conventional antifungals. The CE of E. uniflora presented range of MIC values between 1.95 to 1000 μg/mL, and lower MIC50 and MIC90 values were observed against C. non-albicans. Due the better results, the CE of E. uniflora was elected to performe the bioassay-guided fractionation. Thus it was possible to obtain enriched fractions, which showed good inhibitory ability against ATCC strains of Candida spp. It was also possible to perform experiments to verify the production of biofilm in two strains of C. dubliniensis and action of extracts and fractions on the same. With this, we observed a behavior between the yeast ATCC and clinical isolate. In addition, CE, fractions and subfractions of E. uniflora inhibit planktonic cells to preventing the growth of biofilm. The preliminary chemical characterization of the fractions obtained revealed the presence of polyphenols (especially flavonoids and tannins). Finally, the results suggests that among the plant species studied, E. uniflora showed a pattern very promising as regards the antifungal, requiring further study of purification and structural elucidation of compounds in order to verify that the antifungal effect found can be attributed to a specific compound or some mechanism depends on synergistic the mixture of polyphenols
Resumo:
Several studies have been developed regarding health risks associated with the recreational use of beaches contaminated with domestic sewage. These wastes contain various microorganisms, including Candida tropicalis, etiologic agent of both superficial infections such as systemic, as well as indicator of fecal contamination for the environment. In this context, the objective of this study was to characterize C. tropicalis isolates from the sandy beach of Ponta Negra, Natal, Rio Grande do Norte, Brazil, regarding the expression of in vitro virulence factors, adaptation to osmotic stress and susceptibility to antifungal drugs. We analyzed 62 environmental isolates of C. tropicalis and observed a great variation between them for the various virulence factors evaluated. In general, environmental isolates were more adherent to CEBH than C. tropicalis ATCC13803 reference strain, besides the fact they were also highly biofilm producers. In relation to morphogenesis, most isolates presented wrinkled phenotype in Spider medium (34 isolates, 54.8 %). When assessing enzyme activity, most isolates had higher proteinase production than C. tropicalis ATCC13803 reference strain. In addition, 35 isolates (56.4 %) had high hemolytic activity (hemolysis index > 55). With regard to C. tropicalis resistance to osmotic stress, 85.4% of the isolates were able to grow in a liquid medium containing 15% sodium chloride, corroborating to high survival capacity described for this yeast at marine environment. Finally, with regard to sensitivity to antifungal drugs, it was observed high resistance to the azoles tested, with the occurrence of the "Low-high" phenomenon and similar effect to the paradoxical growth which occurs to the echinocandins. For the three azoles tested we verified that 15 strains were resistant (24.2 %). Some strains were also resistant to amphotericin B (14 isolates, 22.6 %), while all of them were sensitive for the echinocandins tested. Therefore, our results demonstrate that C. tropicalis isolated from the sand of northeast of Brazil can fully express virulence attributes and showed a high persistence capacity on the coastal environment, in addition of being significantly resistant to most applied antifungals in current clinical practice. This constitutes a potential health risk to visitors of this environment, especially immunocompromised individuals and those with extreme age range.
Resumo:
The inefficiency of chemical pesticides to control phytopathogenic fungi in agriculture and the frequent incidence of human diseases caused by bacteria which are resistant to antibiotics lead to the search for alternative antimicrobial compounds. In this context, plant defensins are a promising tool for the control of both plant and human pathogenic agents. Plant defensins are cationic peptides of about 50 amino acid residues, rich in cysteine and whose tridimensional structure is considerably conserved among different plant species. These antimicrobial molecules represent an important innate component from plant defense response against pathogens and are expressed in various plant tissues, such as leaves, tubers, flowers, pods and seeds. The present work aimed at the evaluation of the antimicrobial activity of two plant defensins against different phytopathogenic fungi and pathogenic bacteria to humans. The defensin Drr230a, whose gene was isolated from pea (Pisum sativum), and the defensin CD1,whose gene was identified within coffee (Coffea arabica) transcriptome, were subcloned in yeast expression vector and expressed in Pichia pastoris. The gene cd1 was subcloned as two different recombinant forms: CD1tC, containing a six-histidine sequence (6xHis) at the peptide C-terminal region and CD1tN, containing 6xHis coding sequence at the N-terminal region. In the case of the defensin Drr230a, the 6xHis coding sequence was inserted only at the N-terminal region. Assays of the antimicrobial activity of the purified recombinant proteins rDrr230a and rCD1 against Phakopsora pachyrhizi, causal agent of soybean Asian rust, were performed to analyze the in vitro spore germination inhibition and disease severity caused by the fungus in planta. Both recombinant defensins were able to inhibit P. pachyrhizi uredospore germination, with no difference between the antimicrobial action of either CD1tC or CD1tN. Moreover, rDrr230a and rCD1 drastically reduced severity of soybean Asian rust, as demonstrated by in planta assays. In spite of the fact that rCD1 was not able to inhibit proliferation of the human pathogenic bacteria Staplylococcus aureus and Klebsiella pneumoniae, rCD1 was able to inhibit growth of the phytopathogenic fungus Fusarium tucumaniae, that causes soybean sudden death syndrome. The obtained results show that these plant defensins are useful candidates to be used in plant genetic engineering programs to control agriculture impacting fungal diseases.