2 resultados para LUCIFERASE
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Introduction: This study aimed to investigate the effects of the two peptide NOP partial agonists (UFP-113 and [F/G]N/OFQ(1-13)NH2) and the non peptide NOP partial agonist (AT-090) in the mouse emotional behavior as well as in the intracellular transduction pathways following the receptor binding. Methods: Male Swiss or CD-1 mice were used in this study together with NOP(+/+) and NOP(-/-) mice. The elevated plus maze (EPM) was used to evaluate the effects of compounds on anxiety-like behaviors. Diazepam and the NOP agonists, N/OFQ and Ro 65-6570, were used as positive controls in the EPM. NOP(+/+) and NOP(-/-) mice were used to evaluate the selectivity of those compounds that induced anxiolytic-like behaviors. The forced swim test (FST) was used to evaluate the effects of compounds on depressive-like behaviors. Nortriptyline and the NOP antagonists, UFP-101 and SB-612111, were used as positive controls in the FST. The effects of N/OFQ, UFP-101, SB-612111, UFP-113, [F/G]N/OFQ(1-13)NH2, and AT-090 were assessed in the methylphenidate-induced hyperlocomotion (MIH) test; in this assay valproate was used as positive control. The G protein and β-arrestin 2 transduction pathways of NOP receptor agonists (N/OFQ and Ro 65-6570), antagonist (UFP-101), and partial agonists (UFP-113, [F/G]N/OFQ(1-13)NH2, and AT-090) were also evaluated using an innovative assay that measures a bioluminescence resonance energy transfer process. For this, cell lines permanently co-expressing the NOP receptor coupled to luciferase (energy donor), and green fluorescent protein (energy acceptor) coupled to one of the effector proteins (G protein or β-arrestin 2) were used. Results: Diazepam (1 mg/kg), N/OFQ (1 nmol), Ro 65-6570 (0.1 mg/kg), and AT-090 (0.01 mg/kg) induced anxiolytic-like effect in mice in the EPM. The effects of Ro 65-6570 and AT-090 were selective to NOP receptor. UFP-113 (0.01-1 nmol) and [F/G]N/OFQ(1-13)NH2 (0.1-3 nmol) were inactive in the EPM. In the FST, nortriptyline (30 mg/kg), UFP-101 (10 nmol), SB-612111 (10 mg/kg), UFP-113 (0.01 and 0.1 nmol), and [F/G]N/OFQ(1-13)NH2 (0.3 and 1 nmol) induced antidepressant-like effects, while AT-090 (0.001-0.1 mg/kg) was inactive in this assay. The effects of UFP-113 and [F/G]N/OFQ(1-13)NH2 were selective to NOP receptor. Valproate (400 mg/kg) counteracted methylphenidate (MPH, 10 mg/kg)-induced hyperlocomotion in mice in the open field. N/OFQ (1 nmol), UFP-113 (0.01-0.1 nmol), and [F/G]N/OFQ(1-13)NH2 (1 nmol) were also able to reduce the MPH-induced hyperlocomotion, without changing the locomotor activity per se. The effect of UFP-113 was selective to NOP receptor. The UFP-101 (10 nmol), SB-612111 (10 mg/kg), and AT-090 (0.001-0.03 mg/kg) did not change the hyperlocomotor effect of methylphenidate. In vitro, N/OFQ and Ro 65-6570 behaved as NOP full agonists for G-protein and β-arrestin 2 pathways. AT-090 behaved as NOP receptor partial agonist for both transduction pathways, while UFP-113 and [F/G]N/OFQ(1-13)NH2 behaved as partial agonists and antagonists of NOP receptor for NOP/G protein and NOP/β-arrestin 2, respectively. UFP-101 behaved as NOP receptor antagonist for both transduction pathways. Conclusion: NOP ligands producing same effects on NOP/G protein interaction (partial agonism), but with opposite effects on β-arrestin 2 recruitment (partial agonism vs antagonism), can promote different in vivo effects on anxiety and mood as it was observed in the behavioral tests. This work corroborates the potential of NOP receptor as an innovative pharmacological target for the treatment of emotional disorders.
Resumo:
Introduction: This study aimed to investigate the effects of the two peptide NOP partial agonists (UFP-113 and [F/G]N/OFQ(1-13)NH2) and the non peptide NOP partial agonist (AT-090) in the mouse emotional behavior as well as in the intracellular transduction pathways following the receptor binding. Methods: Male Swiss or CD-1 mice were used in this study together with NOP(+/+) and NOP(-/-) mice. The elevated plus maze (EPM) was used to evaluate the effects of compounds on anxiety-like behaviors. Diazepam and the NOP agonists, N/OFQ and Ro 65-6570, were used as positive controls in the EPM. NOP(+/+) and NOP(-/-) mice were used to evaluate the selectivity of those compounds that induced anxiolytic-like behaviors. The forced swim test (FST) was used to evaluate the effects of compounds on depressive-like behaviors. Nortriptyline and the NOP antagonists, UFP-101 and SB-612111, were used as positive controls in the FST. The effects of N/OFQ, UFP-101, SB-612111, UFP-113, [F/G]N/OFQ(1-13)NH2, and AT-090 were assessed in the methylphenidate-induced hyperlocomotion (MIH) test; in this assay valproate was used as positive control. The G protein and β-arrestin 2 transduction pathways of NOP receptor agonists (N/OFQ and Ro 65-6570), antagonist (UFP-101), and partial agonists (UFP-113, [F/G]N/OFQ(1-13)NH2, and AT-090) were also evaluated using an innovative assay that measures a bioluminescence resonance energy transfer process. For this, cell lines permanently co-expressing the NOP receptor coupled to luciferase (energy donor), and green fluorescent protein (energy acceptor) coupled to one of the effector proteins (G protein or β-arrestin 2) were used. Results: Diazepam (1 mg/kg), N/OFQ (1 nmol), Ro 65-6570 (0.1 mg/kg), and AT-090 (0.01 mg/kg) induced anxiolytic-like effect in mice in the EPM. The effects of Ro 65-6570 and AT-090 were selective to NOP receptor. UFP-113 (0.01-1 nmol) and [F/G]N/OFQ(1-13)NH2 (0.1-3 nmol) were inactive in the EPM. In the FST, nortriptyline (30 mg/kg), UFP-101 (10 nmol), SB-612111 (10 mg/kg), UFP-113 (0.01 and 0.1 nmol), and [F/G]N/OFQ(1-13)NH2 (0.3 and 1 nmol) induced antidepressant-like effects, while AT-090 (0.001-0.1 mg/kg) was inactive in this assay. The effects of UFP-113 and [F/G]N/OFQ(1-13)NH2 were selective to NOP receptor. Valproate (400 mg/kg) counteracted methylphenidate (MPH, 10 mg/kg)-induced hyperlocomotion in mice in the open field. N/OFQ (1 nmol), UFP-113 (0.01-0.1 nmol), and [F/G]N/OFQ(1-13)NH2 (1 nmol) were also able to reduce the MPH-induced hyperlocomotion, without changing the locomotor activity per se. The effect of UFP-113 was selective to NOP receptor. The UFP-101 (10 nmol), SB-612111 (10 mg/kg), and AT-090 (0.001-0.03 mg/kg) did not change the hyperlocomotor effect of methylphenidate. In vitro, N/OFQ and Ro 65-6570 behaved as NOP full agonists for G-protein and β-arrestin 2 pathways. AT-090 behaved as NOP receptor partial agonist for both transduction pathways, while UFP-113 and [F/G]N/OFQ(1-13)NH2 behaved as partial agonists and antagonists of NOP receptor for NOP/G protein and NOP/β-arrestin 2, respectively. UFP-101 behaved as NOP receptor antagonist for both transduction pathways. Conclusion: NOP ligands producing same effects on NOP/G protein interaction (partial agonism), but with opposite effects on β-arrestin 2 recruitment (partial agonism vs antagonism), can promote different in vivo effects on anxiety and mood as it was observed in the behavioral tests. This work corroborates the potential of NOP receptor as an innovative pharmacological target for the treatment of emotional disorders.