4 resultados para LATTICE-CONSTANT

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physical-chemical properties of Ti are sensible to the presence of interstitial elements. In the case of thermochemical treatments plasma assisted, the influence of different active species is not still understood. In order to contribute for such knowledge, this work purposes a study of the role played by the active species atmosphere into the Ar N2 CH4 carbonitriding plasma. It was carried out a plasma diagnostic by OES (Optical Emission Spectroscopy) in the z Ar y N2 x CH4 plasma mixture, in which z, y and x indexes represent gas flow variable from 0 to 4 sccm (cm3/min). The diagnostic presents abrupt variations of emission intensities associated to the species in determined conditions. Therefore, they were selected in order to carry out the chemical treatment and then to investigate their influences. Commercial pure Ti disks were submitted to plasma carbonitriding process using pre-established conditions from the OES measurements while some parameters such as pressure and temperature were maintained constant. The concentration profiles of interstitial elements (C and N atoms) were determined by Resonant Nuclear Reaction Analysis (NRA) resulting in a depth profile plots. The reactions used were 15N(ρ,αγ)12C and 12C(α,α)12C. GIXRD (Grazing Incidence X-Ray Diffraction) analysis was used in order to identify the presence of phases on the surface. Micro-Raman spectroscopy was used in order to qualitatively study the carbon into the TiCxN1 structure. It has been verified which the density species effectively influences more the diffusion of particles into the Ti lattice and characteristics of the layer formed than the gas concentration. High intensity of N2 + (391,4 nm) and CH (387,1 nm) species promotes more diffusion of C and N. It was observed that Hα (656,3 nm) species acts like a catalyzer allowing a deeper diffusion of nitrogen and carbon into the titanium lattice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work a studied the high energy milling effect in microstructure and magnetic properties of the WC-10wt.%Co composite. The composite powders were prepared by mechanical mixed and milled at 2 hours, 100 hours, 200 hours and 300 hours in planetary milling. After this process the composite were compacted in stainless steel die with cylindrical county of 10 mm of diameter, at pressure 200 Mpa and sintered in a resistive furnace in argon atmosphere at 1400 oC for 5 min. The sintered composite were cutted, inlaid, sandpapered, and polished. The microestrutural parameters of the composite was analyzed by X-ray diffraction, scanning electronic microscopy, optical microscopy, hardness, magnetic propriety and Rietveld method analyze. The results shows, with milling time increase the particle size decrease, it possibility minor temperature of sintering. The increase of milling time caused allotropic transformation in cobalt phase and cold welding between particles. The cold welding caused the formation of the particle composite. The X-ray diffraction pattern of composite powders shows the WC peaks intensity decrease with the milling time increase. The X-ray diffraction pattern of the composite sintered samples shows the other phases. The magnetic measurements detected a significant increase in the coercitive field and a decrease in the saturation magnetization with milling time increase. The increase coercitive field it was also verified with decrease grain size with milling time increase. For the composite powders the increase coercitive field it was verified with particle size reduction and saturation magnetization variation is relate with the variation of free cobalt. The Rietveld method analyze shows at milling time increase the mean crystalline size of WC, and Co-cfc phases in composite sintered sample are higher than in composite powders. The mean crystallite size of Co-hc phase in composite powders is higher than in composite sintered sample. The mean lattice strains of WC, Co-hc and Co-cfc phases in composite powders are higher than in composite sintered samples. The cells parameters of the composite powder decrease at milling time increase this effect came from the particle size reduction at milling time increase. In sintered composite the cells parameters is constant with milling time increase

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasma diagnostics by Optical Emission Spectroscopy were performed for electrical discharge in three gas mixture respecting the combinations z N2 y Ar x H2, z N2 y Ar x O2 e z N2 y Ar x CH4, in which the indexes z and y systematically vary from 1 to 4 and x varies from 0 to 4, every one has dimension SCCM, resulting in 80 combinations. From the all obtained spectrums, the species CH (387,1 nm), N2+ (391,4 nm), Hβ (486,1 nm), Hα (656,3 nm), Ar (750,4 nm), O (777,4 nm) e O (842,6 nm) were analyzed because of their abundance and importance on the kinetic of reaction from the plasma to surface, besides their high dependences on the gases flows. Particularly interesting z, y and x combinations were chosen in order to study the influence of active species on the surface modification during the thermochemical treatment. From the mixtures N2 Ar O2 e N2 Ar CH4 were chosen three peculiar proportions which presented luminous intensity profile with unexpected maximum or minimum values, denominated as plasma anomaly. Those plasma concentrations were utilized as atmosphere of titanium treatment maintaining constant the control parameters pressure and temperature. It has been verified a relation among luminous intensity associated to N2+ and roughness, nanohardness and O atoms diffusion into the crystalline lattice of treated titanium and it has been seen which those properties becomes more intense precisely in the higher points found in the optical profile associated to the N2+ specie. Those parameters were verified for the mixture which involved O2 gas. For the mixture which involves CH4 gas, the relation was determinate by roughness, number of nitrogen and carbon atoms diffused into the titanium structure which presented direct proportionality with the luminous intensity referent to the N2+ and CH. It has been yet studied the formation of TiCN phases on the surface which presented to be essentially directly proportional to the increasing of the CH specie and inversely proportional to the increasing of the specie N2+

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physical properties and the excitations spectrum in oxides and semiconductors materials are presented in this work, whose the first part presents a study on the confinement of optical phonons in artificial systems based on III-V nitrides, grown in periodic and quasiperiodic forms. The second part of this work describes the Ab initio calculations which were carried out to obtain the optoeletronic properties of Calcium Oxide (CaO) and Calcium Carbonate (CaCO3) crystals. For periodic and quasi-periodic superlattices, we present some dynamical properties related to confined optical phonons (bulk and surface), obtained through simple theories, such as the dielectric continuous model, and using techniques such as the transfer-matrix method. The localization character of confined optical phonon modes, the magnitude of the bands in the spectrum and the power laws of these structures are presented as functions of the generation number of sequence. The ab initio calculations have been carried out using the CASTEP software (Cambridge Total Sequential Energy Package), and they were based on ultrasoft-like pseudopotentials and Density Functional Theory (DFT). Two di®erent geometry optimizations have been e®ectuated for CaO crystals and CaCO3 polymorphs, according to LDA (local density approximation) and GGA (generalized gradient approximation) approaches, determining several properties, e. g. lattice parameters, bond length, electrons density, energy band structures, electrons density of states, e®ective masses and optical properties, such as dielectric constant, absorption, re°ectivity, conductivity and refractive index. Those results were employed to investigate the confinement of excitons in spherical Si@CaCO3 and CaCO3@SiO2 quantum dots and in calcium carbonate nanoparticles, and were also employed in investigations of the photoluminescence spectra of CaCO3 crystal