3 resultados para KRAS GENE MUTATION
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Pleomorphic adenoma and adenoid cystic carcinoma represent a benign and malignant salivary gland neoplasm, respectively, that shares the same histological origin, however with distinct biological behavior. The aim of the present study was identify the -160 C/A polymorphism in the gene CDH1, mutational analysis of CTNNB1 gene and evaluation the expression of the E-cadherin and β-catenin in pleomorphic adenomas and adenoid cystic carcinomas. Furthermore, it was proposed correlate the immunochemistry staining patterns with the polymorphism and mutations. Twenty-four pleomorphic adenomas and 24 adenoid cystic carcinomas were retrieved. The polymorphism analysis was performed by restriction fragment length polymorphism (RFLP), using the restriction enzymes HphI or AflIII and the mutational screening was performed by PCR-single strand conformational polymorphism (PCR-SSCP). The immunohistochemical analysis was taken by the counting of cells, recorded as the Hscore index, and considering the presence or absence, intensity, distribution and localization of proteins expression. Comparing the two neoplasms, the results demonstrated statistically significant difference for the E-cadherin and β-catenin expression, with pleomorphic adenoma presenting weaker immunostaining. Was observed statistical correlation between E-cadherin and β-catenin expression. CDH1 heterozigotic polymorphism was seen in two cases and 13 cases displayed abnormal mobility electrophoretic shifts, suggesting CTNNB1 gene mutation. The immunohistochemical expression was not statistically correlated with the polymorphism or suggested mutations. In conclusion this study supports that the E-cadherin/β-catenin complex immunohistochemical expression might be related with the myoepithelial component amount and differentiation neither the tumor biological behavior. The cases that showed E-cadherin gene polymorphism presented reduced protein expression and, moreover, CTNNB1 suggested mutations seem not influence in the β-catenin protein expression
Resumo:
Hereditary Hemochromatosis (HH) is a genetic disease caused by high iron absorption and deposition in several organs. This accumulation results in clinical disturbances such as cirrhosis, arthritis, cardiopathies, diabetes, sexual disorders and skin darkening. The H63D and C282Y mutations are well defined in the hemochromatosis etiology. The aim of this paper was that of identifying the H63D and C282Y genetical mutations in the hemochromatosis gene and the frequency assessment of these mutations in the HFE protein gene in patients with hyperferritin which are sent to the DNA Center laboratory in Natal, state of Rio Grande do Norte. This paper also evaluates the HH H63D and C282Y gene mutations genotype correlation with the serum ferritin concentration, glucose, alanine aminotransferasis, aspartato aminotransferasis, gama glutamil transferasis and with the clinical complications and also the interrelation with life habits including alcoholism and iron overload. The biochemical dosages and molecule analyses are done respectively by the enzymatic method and PCR with enzymatic restriction. Out of the 183 patients investigated, 51,4% showed no mutation and 48,6% showed some type of mutation: 5,0% were C282Y heterozygous mutation; 1,1%, C282Y homozygous mutation; 31%, H63D heterozygous mutation; 8,7%, H63D homozygous mutation; and 3,3%, heterozygous for the mutation in both genes. As to gender, we observed a greater percentage of cases with molecular alteration in men in relation to women in the two evaluated mutations. The individuals with negative results showed clinical and lab signs which indicate hemochromatosis that other genes could be involved in the iron metabolism. Due to the high prevalence of hemochromatosis and taking into account that hemochromatosis is considered a public health matter, its gravity being preventable and the loss treatment toxicity, the early genetic diagnosis is indicated, especially in patients with high ferritin, and this way it avoids serious clinical manifestations and increases patients' life expectation. Our findings show the importance of doing such genetic studies in individuals suspected of hereditary hemochromatosis due to the high incidence of such a hereditary disease in our region
Resumo:
Mutations on TP53 gene are common in human cancer but not in cervical cancer where they are rarely found and the inactivation and degradation of p53 protein are attributed to the action of E6 viral oncogene from high risk human papillomavirus (HPV). Analysis of cervical cancer cell lines suggests that HPV negative samples shows mutation on TP53, but clinical approaches didn t confirmed this hypothesis. However, in most TP53 mutations studies on cervical cancer, only the exons 5 to 8 were analyzed. Approximately 90% of mutations described are on this region. Recent studies on several cancer suggests that mutation frequency in the other exons must be considered. The aim of this work was to verify whether mutations on coding and non-coding regions occur in cancer tissue from cervical cancer in patients from Rio Grande do Norte using Denaturing Gradient Gel Electrophoresis (DGGE) as screening tool. Exons 8 to 11 were analyzed including some introns from 80 tumor samples and 8 peripheral blood samples from healthy women. DNA were submitted to PCR using primers with GC clamp on the end of one of them. The results were observed for each region after DGGE and silver staining. It was observed no amplified fragment with different migration profile from those obtained from DNA of peripheral blood. These results agree with those from literature where TP53 mutations in cervical cancer have been described in a very low frequency