3 resultados para Jodocus, Margrave of Moravia, ca. 1350-1411.
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Steam injection is the most used thermal recovery method of oil nowadays because of the high degree of development of the technique that allows high recovery factors. However, injection of superheated steam into the reservoir affects the entire structure of the well, including the cemented layer that presents a retrogression of compressive strength and increases the permeability due to formation of more crystalline and denser phases at temperatures above 110 °C. These changes result in failures in the cement that favor the entrance of formation fluids into the annulus space resulting in unsafe operations and restrictions in the economic life of the well. But the strength retrogression can be prevented by partial replacement of cement by silica-based materials that reduce the CaO/SiO2 ratio of cement slurries changing the trajectory of the reactions, converting those deleterious phases in phases with satisfactory mechanical strength and permeability. The aim of this study was to evaluate the behavior of a ceramic waste material rich in silica in partial and total substitution of a mineral additive used to fight the strength retrogression of cement slurries subjected to high temperatures. The evaluation was made by compression, X-ray diffraction (XRD) and thermogravimetry (TG/DTG). The samples were submitted to a cycle of low temperature (38 °C) for 28 days and a cycle of low temperature followed by exposure to 280 ºC and 1000 psi by 3 days. The results showed that slurries with additions of up to 30% of the waste material are not enough to prevent the strength retrogression, while slurries with additions of the waste material combined with silica flour in various proportions produced hydrated products of low Ca/Si ratios that maintained the compressive strength at satisfactory levels
Resumo:
The fissures aquifer northeast semi-arid Brazilian, present high text frequently of leave, with of low a hídric availability. The research has as objective main to analyze the components that inside influence in the salinity of the waterbearing fissures of an evaluation physicist-chemistry of the water, leading in consideration the physical interventions of the environment. One used techniques of interpretation of image of Landsat satellite -1999 and delimitation of the micro basin through the topographical map SUDENE. One identified waters of the NaCl type with Ca++ and Mg++ in secondary concentrations. The analyzed wells (15), had presented an average salinity of 5.147 mg/L of STD and a well only supplies drinking waters with 319 mg/L of STD. The recharge of the aquifer one if carries through for infiltration in the open fracture of ortognaisse it migmatization. The type and directions of the fracture do not control the STD. Relations between salinity and out let do not exist. The quality of the well of low salinity is identical the superficial waters (aquifer dam and alluvial). The studies of the meteoric erosion processes had evidenced that in the transformations of the rock in ground, the Ca++ and Na+ are taken for superficial waters. The treatment of the data chemical showed that the grade of Na+, Ca++, Mg++ and Cl-are controlled for the evaporation process, from only water that would have the qualities of superficial waters or the well of low salinity. Already the HCO3-grade is controlled for the precipitation of the dolomite. The STD of this aquifer one would be consequence of the high tax of evaporation of dams constructed in regions of plain topography. You leave them precipitated in deep argillaceous ones dry dams are led for the aquifer in first rains. The research suggests some recommendations for the use and exploitation of the water salinity in piscicultura, carcinicultura, culture of the grass-salt (Atriplex sp), among others
Resumo:
Steam injection is the most used thermal recovery method of oil nowadays because of the high degree of development of the technique that allows high recovery factors. However, injection of superheated steam into the reservoir affects the entire structure of the well, including the cemented layer that presents a retrogression of compressive strength and increases the permeability due to formation of more crystalline and denser phases at temperatures above 110 °C. These changes result in failures in the cement that favor the entrance of formation fluids into the annulus space resulting in unsafe operations and restrictions in the economic life of the well. But the strength retrogression can be prevented by partial replacement of cement by silica-based materials that reduce the CaO/SiO2 ratio of cement slurries changing the trajectory of the reactions, converting those deleterious phases in phases with satisfactory mechanical strength and permeability. The aim of this study was to evaluate the behavior of a ceramic waste material rich in silica in partial and total substitution of a mineral additive used to fight the strength retrogression of cement slurries subjected to high temperatures. The evaluation was made by compression, X-ray diffraction (XRD) and thermogravimetry (TG/DTG). The samples were submitted to a cycle of low temperature (38 °C) for 28 days and a cycle of low temperature followed by exposure to 280 ºC and 1000 psi by 3 days. The results showed that slurries with additions of up to 30% of the waste material are not enough to prevent the strength retrogression, while slurries with additions of the waste material combined with silica flour in various proportions produced hydrated products of low Ca/Si ratios that maintained the compressive strength at satisfactory levels