7 resultados para Jeannel Coleoptera
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Chitin is an important structural component of the cellular wall of fungi and exoskeleton of many invertebrate plagues, such as insects and nematodes. In digestory systems of insects it forms a named matrix of peritrophic membrane. One of the most studied interaction models protein-carbohydrate is the model that involves chitin-binding proteins. Among the involved characterized domains already in this interaction if they detach the hevein domain (HD), from of Hevea brasiliensis (Rubber tree), the R&R consensus domain (R&R), found in cuticular proteins of insects, and the motif called in this study as conglicinin motif (CD), found in the cristallography structure of the β-conglicinin bounded with GlcNac. These three chitin-binding domains had been used to determine which of them could be involved in silico in the interaction of Canavalia ensiformis and Vigna unguiculata vicilins with chitin, as well as associate these results with the WD50 of these vicilins for Callosobruchus maculatus larvae. The technique of comparative modeling was used for construction of the model 3D of the vicilin of V. unguiculata, that was not found in the data bases. Using the ClustalW program it was gotten localization of these domains in the vicilins primary structure. The domains R&R and CD had been found with bigger homology in the vicilins primary sequences and had been target of interaction studies. Through program GRAMM models of interaction ( dockings ) of the vicilins with GlcNac had been gotten. The results had shown that, through analysis in silico, HD is not part of the vicilins structures, proving the result gotten with the alignment of the primary sequences; the R&R domain, although not to have structural similarity in the vicilins, probably it has a participation in the activity of interaction of these with GlcNac; whereas the CD domain participates directly in the interaction of the vicilins with GlcNac. These results in silico show that the amino acid number, the types and the amount of binding made for the CD motif with GlcNac seem to be directly associates to the deleterious power that these vicilins show for C. maculatus larvae. This can give an initial step in the briefing of as the vicilins interact with alive chitin in and exert its toxic power for insects that possess peritrophic membrane
Resumo:
Chitin is an important structural component of the cellular wall of fungi and exoskeleton of many invertebrate plagues, such as insects and nematodes. In digestory systems of insects it forms a named matrix of peritrophic membrane. One of the most studied interaction models protein-carbohydrate is the model that involves chitin-binding proteins. Among the involved characterized domains already in this interaction if they detach the hevein domain (HD), from of Hevea brasiliensis (Rubber tree), the R&R consensus domain (R&R), found in cuticular proteins of insects, and the motif called in this study as conglicinin motif (CD), found in the cristallography structure of the β-conglicinin bounded with GlcNac. These three chitin-binding domains had been used to determine which of them could be involved in silico in the interaction of Canavalia ensiformis and Vigna unguiculata vicilins with chitin, as well as associate these results with the WD50 of these vicilins for Callosobruchus maculatus larvae. The technique of comparative modeling was used for construction of the model 3D of the vicilin of V. unguiculata, that was not found in the data bases. Using the ClustalW program it was gotten localization of these domains in the vicilins primary structure. The domains R&R and CD had been found with bigger homology in the vicilins primary sequences and had been target of interaction studies. Through program GRAMM models of interaction ( dockings ) of the vicilins with GlcNac had been gotten. The results had shown that, through analysis in silico, HD is not part of the vicilins structures, proving the result gotten with the alignment of the primary sequences; the R&R domain, although not to have structural similarity in the vicilins, probably it has a participation in the activity of interaction of these with GlcNac; whereas the CD domain participates directly in the interaction of the vicilins with GlcNac. These results in silico show that the amino acid number, the types and the amount of binding made for the CD motif with GlcNac seem to be directly associates to the deleterious power that these vicilins show for C. maculatus larvae. This can give an initial step in the briefing of as the vicilins interact with alive chitin in and exert its toxic power for insects that possess peritrophic membrane
Resumo:
A proteinaceous trypsin inhibitor was purified from Crotalaria pallida seeds by ammonium sulphate fractionation, affinity chromatography on immobilized Trypsin-Sepharose and TCA precipitation. The trypsin inhibitor, named ITC, had Mr of 32.5 kDa by SDS-PAGE and was composed by two subunits with 27.7 and 5.6 kDa linked by disulphide bridges, a typical characteristic of Kunitz-Inhibitor family. ITC was stable until 50°C, and at 100°C its residual activity was of about 60%. Also, ITC was stable at pHs 2 to 12. The inhibition of trypsin by ITC was non-competitive, with a Ki of 8,8 x 10-7M. ITC inhibits weakly other serine proteinases such as chymotrypsin and elastase. The inhibition of papain (44% of inhibition), a cysteine proteinase was an indicative of the bi-functionality of ITC. In vitro assays against digestive proteinases from several Lepdoptera, Diptera and Coleoptera pests were made. ITC inhibited in 100% digestive enzymes of Ceratitis capitata (fruit fly), Spodoptera frugiperda and Alabama argillacea, the last one being a cotton pest. It also inhibited in 74.4% Callosobruchus maculatus (bean weevil) digestive enzymes, a Coleoptera pest. ITC, when added in artificial diet models, affected weakly the development of C. capitata larvae and it had a WD50 of 2.65% to C. maculatus larvae
Resumo:
One Kunitz-type trypsin inhibitors (PmTI) was purified from Piptadenia moniliformis seeds, a tree of the sub-family Mimosoideae, by TCA precipitation, affinity chromatography on immobilized trypsin-Sepharose, DEAE cellulose (ion exchange) and Superose 12 (molecular exclusion) column FPLC/AKTA. The inhibitor has Mr of 25 kDa by SDS-PAGE and chromatography molecular exclusion. The N-terminal sequence of this inhibitor showed high homology with other family Kunitz inhibitors. This also stable variations in temperature and pH and showed a small decrease in its activity when incubated with DDT in the concentration of 100mM for 120 minutes. The inhibition of trypsin by PmTI was competitive, with Ki of 1.57 x10-11 M. The activity of trypsin was effectively inhibited by percentage of inhibition of 100%, among enzymes tested, was not detected inhibition for the bromelain, was weak inhibitor of pancreatic elastase (3.17% of inhibition) and inhibited by 76.42% elastase of neutrophils, and inhibited in a moderate, chymotrypsin and papain with percentage of inhibition of 42.96% and 23.10% respectively. In vitro assays against digestive proteinases from Lepidoptera, Diptera and Coleoptera pests were carried out. Several degrees of inhibition were found. For Anthonomus grandis and Ceratitis capitata the inhibition was 89.93% and 70.52%, respectively, and the enzymes of Zabrotes subfasciatus and Callosobruchus maculatus were inhibited by 5.96% and 9.41%, respectively, and the enzymes of Plodia. interpunctella and Castnia licus were inhibited by 59.94% and 23.67, respectively. In vivo assays, was observed reduction in the development of larvae in 4rd instar of C. capitata, when PmTI was added to the artificial diet, getting WD50 and LD50 of 0.30% and 0.33%, respectively. These results suggest that this inhibitor could be a strong candidate to plant management programs cross transgenic
Resumo:
The diet study of birds has contributed historically as a model for use to understanding ecological patterns and strategies used by several other groups of vertebrates, which are observed in season patterns and temporal availability of resources, and other. This study has as objective generate information concerning the diet of insectivorous birds during rainy season and dry season, as well as analyze Index food importance, niche overlap, niche breadth, electivity, and seasonal availability of prey. The study was conducted in a fragment of about 270 ha (center coordinates and 5 º 53'S 35 ° 23'W). The sampling of birds occurred between March 2008 and December 2009 in three pre-established trails. Catches of birds were performed using 10 mist nets placed in line, where each trails was sampled once a month. Samples of pellets were obtained by means of tartar emetic. Sampling of availability of prey occurred between February 2009 to December 2009. We used two methods of sampling (pitfall traps and Shake cloths). We captured 269 individuals of 21 species of insectivorous birds. We collected 4116 invertebrates of which 3259 in the rainy season and 857 in the dry season. We obtained 174 samples stomach, where 10 species were exclusively insectivorous diet, nine fed on insect/plant material, an insect/plant material/vertebrate and one for insect/vertebrate. During the rainy season was observing difference between the consumption of items with higher food importance. The Coleoptera was item with higher food importance (73%), followed by Formicidae (7%) and Araneae (6%). During the dry season, no difference was found difference between the consumption of items with higher food importance. The Coleoptera was item with higher food importance (34%), followed by seeds (29%) and Formicidae (18%). The highest levels of niche overlap occurred during the rainy season, while the dry season was characterized by high levels of niche 11 segregation. This indicates that the local insectivorous birds community was structured differently between periods. No was found correlation between the values of niche breadth to the mean weight of the body size. We observed seasonal patterns in prey availability, with the peak availability of invertebrates observed seasonal patterns in rainy season. The insectivorous birds selected the same species richness during both periods, showing a specialized diet. Thamnophilus pelzelni was the only species that had their diet influenced by seasonality. Regarding the overall diet of insectivorous birds, observed a high consumption of prey, whose food availability caused the birds could invest and increase their food resources
Resumo:
This study evaluated the spatial, time and alimentary niches of Tropidurus hispidus and Tropidurus semitaeniatus in sympatry in a caatinga of Rio Grande do Norte, Brazil, as well as their foraging and termoregulatory behaviors, the activity body temperature and their reproductive and fat body cycles. Monthly excursions, from October 2006 to May 2008, were conducted at the Ecological Station of the Seridó (ESEC Seridó), Serra Negra do Norte municipality, using specific methodology for investigation of the aforementioned objectives. The two species presented similarities in space niche use, mainly in rocky habitat, however they differed in vertical microhabitat use with T. hispidus using a larger vertical microhabitat range. In the dry season the time of activity of both species was bimodal. In the wet season T. semitaeniatus showed a unimodal activity period, while T. hispidus maintained an bimodal activity period. In terms of importance in the diet, to both species, Hymenoptera/Formicidae and Isoptera predominated during the dry season. In the wet season, although Hymenoptera/Formicidae had larger importance among the prey items, lizards opportunistically predated on Lepidoptera larvae, Coleoptera larvae/adults and Orthoptera nymphs/adults. The foraging intensity revealed differences between the species, mainly in the wet season, when T. semitaeniatus was more active than T. hispidus. The mean activity body temperature of T. semitaeniatus was significantly higher than that of T. hispidus. The thermoregulatory behavior showed that during the dry season T. hispidus and T. semitaeniatus spent more time in shade or under filtered sun. In the wet season, T. hispidus did not show differences in the amount of time spent among the light exposure locations, however T. semitaeniatus spent most of their time exposed to direct sun or filtered sun. The reproductive cicle of T. hispidus and T. semitaeniatus occurred from the middle of the dry season to the beginning of the wet season. In both species, female reproductive activity was influenced by precipitation, whereas males exhibited spermatozoa in their testes throughout the year, and their reproductive activity was not related with any of the climatic variables analysed. In the two species, the fat storage varied inversely with reproductive activity, and there was no difference in fat body mass between females and males. We concluded that the segregation between T. hispidus and T. semitaeniatus in this caatinga area occurs in vertical space use, in the largest vagility of T. hispidus in microhabitat use and larger range size of their alimentary xviii items. Additionally, significant seasonal differences in relation to the activity period, body temperature, and foraging and termoregulatory behaviors between these two Tropidurus species facilitate their coexistence.
Resumo:
This study investigated the influence of intrinsic and extrinsic factors on the feeding ecology and foraging behavior of the whiptail lizard Ameivula aff. ocellifera, a new species widely distributed in the Brazilian Caatinga, and that is in process of description. In attendance to the objectives, the Dissertation was structured in two chapters, which correspond to scientific articles, one already published and the other to be submitted for publication. In Chapter 1 were analyzed the general diet composition, the relationship between lizard size and prey size, and the occurrence of sexual and ontogenetic differences in the diet. Chapter 2 contemplates a seasonal analysis of diet composition during two rainy seasons interspersed with a dry season, and the quantitative analysis of foraging behavior during two distinct periods. The diet composition was determined through stomach analysis of lizards (N = 111) collected monthly by active search, between September 2008 and August 2010, in the Estação Ecológica do Seridó (ESEC Seridó), state of Rio Grande do Norte. Foraging behavior was investigated during a rainy and a dry month of 2012 also in ESEC Seridó, by determining percent of time moving (PTM), number of movements per minute (MPM) and prey capture rate by the lizards (N = 28) during foraging. The main prey category in the diet of Ameivula aff. ocellifera was Insect larvae, followed by Orthoptera, Coleoptera and Araneae. Termites (Isoptera) were important only in numeric terms, having negligible volumetric contribution (<2%) and low frequency of occurrence, an uncommon feature among whiptail lizards. Males and females did not differ neither in diet composition nor in foraging behavior. Adults and juveniles ingested similar prey types, but differed in prey size. Maximum and minimum prey sizes were positively correlated with lizard body size, suggesting that in this population individuals experience an ontogenetic change in diet, eating larger prey items while growing, and at the same time excluding smaller ones. The diet showed significant seasonal differences; during the two rainy seasons (2009 and 2010), the predominant prey in diet were Insect larvae, Coleoptera and Orthoptera, while in the dry season the predominant prey were Insect larvae, Hemiptera, Araneae and Orthoptera. The degree of mobility of consumed prey during the rainy seasons was lower, mainly due to a greater consumption of larvae (highly sedentary prey) during these periods. Population niche breadth was higher in the dry season, confirming the theoretical prediction that when food is scarce, the diets tend to be more generalized. Considering the entire sample, Ameivula aff. ocellifera showed 61,0 ± 15,0% PTM, 2,03 ± 0,30 MPM, and captured 0,13 ± 0,14 per minute. Foraging mode was similar to that found for other whiptail lizards regarding PTM, but MPM was relatively superior. Seasonal differences were verified for PTM, which was significantly higher in the rainy season (66,4 ± 12,1) than in the dry season (51,5 ± 15,6). It is possible that this difference represents a behavioral adjustment in response to seasonal variation in the abundance and types of prey available in the environment in each season