4 resultados para Isolinhas
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
The study area is located in the NW portion of the Ceará state nearby the city of Santana do Acaraú. Geologically it lies along the Sobral-Pedro II lineament which limits the domains of Ceará Central and Noroeste do Ceará, both belonging to the Borborema Province.The object of study was a NE trending 30km long siliciclastic body (sandstone and conglomerate) bounded by transcurrent dextral faults. The sediments are correlated to the Ipú Formation (Serra Grande Group) from the Parnaiba basin, which age is thought to be Siluro-Devonian. Existing structural data shown that bedding has higher but variable dips (70-45) near the borders faults and much lower to subhorizontal inward the body. The brittle deformation was related to a reactivation, in lower crustal level, of the Sobral-Pedro II lineament (Destro (1987, 1999; Galvão, 2002).The study presented here was focused in applying geophysicals methods (gravimetry and seismic) to determine the geometry of the sandstone/conglomeratic body and together with the structural data, to propose a model to explain its deformation. The residual anomalies maps indicate the presence of two main graben-like structures. The sedimentary pile width was estimated from 2D gravimetric models to be about 500-600 meters. The 3D gravimetric model stressed the two maximum width regions where a good correlation is observed between the isopach geometry and the centripetal strike/dip pattern displayed by the sediments bedding. Two main directions (N-S and E-W) of block moving are interpreted from the distribution pattern of the maximum width regions of the sedimentary rock
Resumo:
The city of Natal has a significant daylight availability, although it use isn’t systematically explored in schools architecture. In this context, this research aims to determine procedures for the analysis of the daylight performance in school design in Natal-RN. The method of analysis is divided in Visible Sky Factor (VSF), simulating and analyzing the results. The annual variation of the daylight behavior requires the adoption of dynamic simulation as data procedure. The classrooms were modelled in SketchUp, simulated in Daysim program and the results were assessed by means of spreadsheets in Microsoft Excel. The classrooms dimensions are 7.20mx 7.20m, with windows-to-wall-ratio (WWR) of 20%, 40% and 50%, and with different shading devices, such as standard horizontal overhang, sloped overhang, standard horizontal overhang with side view protection, standard horizontal overhang with a dropped edge, standard horizontal overhang with three horizontal louvers, double standard horizontal overhang, double standard horizontal overhang with three horizontal louvers, plus the use of shelf light in half the models with WWR of 40% and 50%. The data was organized in spreadsheets, with two intervals of UDI: between 300lux and 2000 lux and between 300lux and 3000lux. The simulation was performed with the weather file of 2009 to the city of NatalRN. The graphical outputs are illuminance curves, isolines of UDI among 300lux and 2000 lux and tables with index of occurrences of glare and to an UDI among 300lux 3000lux. The best UDI300-2000lux performance was evidenced to: Phase 1 (models with WWR of 20%), Phase 2 (models with WWR of 40% and 50% with light shelf). The best UDI300-3000lux performance was evidenced to: Phase 1 (models with WWR of 20% and 40% with light shelf) and Phase 2 (models with WWR of 40% and 50% with light shelf). The outputs prove that the daylight quality mainly depends on the shading system efficacy to avoid the glare occurrence, which determines the daylight discomfort. The bioclimatic recommendations of big openings with partial shading (with an opening with direct sunlight) resulted in illuminances level higher than the acceptable upper threshold. The improvement of the shading system percentage (from 73% to 91%) in medium-size of openings (WWR 40% and 50%) reduced or eliminate the glare occurrence without compromising the daylight zone depth (7.20m). The passive zone was determined for classrooms with satisfactory daylight performance, it was calculated the daylight zone depth rule-of-thumb with the ratio between daylight zone depth and the height of the window for different size of openings. The ratio ranged from 1.54 to 2.57 for WWR of 20%, 40% and 50% respectively. There was a reduction or elimination of glare in the passive area with light shelf, or with awning window shading.
Resumo:
The purpose of this research is to analyze different daylighting systems in schools in the city of Natal/RN. Although with the abundantly daylight available locally, there are a scarce and diffuse architectural recommendations relating sky conditions, dimensions of daylight systems, shading, fraction of sky visibility, required illuminance, glare, period of occupation and depth of the lit area. This research explores different selected apertures systems to explore the potential of natural light for each system. The method has divided into three phases: The first phase is the modeling which involves the construction of three-dimensional model of a classroom in Sketchup software 2014, which is featured in follow recommendations presented in the literature to obtain a good quality of environmental comfort in school settings. The second phase is the dynamic performance computer simulation of the light through the Daysim software. The input data are the climate file of 2009 the city of Natal / RN, the classroom volumetry in 3ds format with the assignment of optical properties of each surface, the sensor mapping file and the user load file . The results produced in the simulation are organized in a spreadsheet prepared by Carvalho (2014) to determine the occurrence of useful daylight illuminance (UDI) in the range of 300 to 3000lux and build graphics illuminance curves and contours of UDI to identify the uniformity of distribution light, the need of the minimum level of illuminance and the occurrence of glare.