3 resultados para Iron doping
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
A presente pesquisa descritiva do tipo documental centrou-se em analisar as sanções disciplinares aplicadas em caso de doping, a atletas profissionais e não profissionais que atuam no Brasil. A amostragem foi levantada através de um processo de seleção não probabilística intencional, utilizando-se como sujeitos, 18 atletas de uma modalidade esportiva dita não profissional: atletismo e 19 de uma modalidade profissional: futebol, de ambos os sexos, os quais tenham sido flagrados pelo exame de controle de dopagem da Confederação Brasileira de Atletismo (CBAt) e da Confederação Brasileira de Futebol (CBF). Como instrumentos de análise, foram utilizados os diagnósticos de dopagem positiva, arquivados junto a CBAt e CBF; além dos processos julgados pelo Superior Tribunal de Justiça Desportiva (STJD) do atletismo entre os anos de 2003/2007 e os processos julgados pelo STJD do futebol no ano de 2007. Os resultados demonstram que as sanções aplicadas aos desportistas diferem muito entre as modalidades incluídas no estudo. Enquanto encontramos, no atletismo a aplicação de sanções em conformidade com o Código Mundial Anti Doping (CMAD) com penalidades de no mínimo de dois anos, no futebol encontrou-se grande número de absolvições ou aplicação de penalidades conforme o Código Brasileiro de Justiça Desportiva (CBJD) que prevê penalidades muito inferiores. Por outro lado verificou-se ser a modalidade Futebol a que mais realiza controles, sendo certo que durante o ano de 2007 o desporto profissional realizou 4832 testes, ao passo que o desporto dito não profissional realizou tão somente 281. O caráter multidisciplinar do trabalho 12 pôde ser caracterizado pelo emprego de técnicas que envolveram direito, educação física, farmacologia
Resumo:
Considering the constant evolution of technology in growth and the need for production techniques in the ceramics area to move forward together, we sought in this study, the research and development of polymeric precursor method to obtain inorganic ceramic pigments. Method that provides quality to obtain the precursor powders of oxides and pigments at the same time, offers time and cost advantages, such as reproducibility, purity and low temperature heat treatment, control of stoichiometry. This work used chromium nitrate and iron nitrate as precursors. The synthesis is based on the dissolution of citric acid as a complexing agent, addition of metal oxides, such as ion chromophores; polymerization with ethylene glycol and doping with titanium oxide. Passing through precalcination, breakdown, thermal treatments at different temperatures of calcination (700 to 1100 oC), resulting in pigments: green for chromium oxide deposited on TiO2 (CrTiO3) and orange for iron oxide deposited on TiO2 ( FeTiO3). Noticing an increase of opacity with increasing temperature. Were performed thermal analysis (TG and ATD) in order to evaluate its thermodecomposition. The powders were also characterized by techniques such as XRD, revealing the formation of crystalline phases such as iron titanate (FeTiO3) and chrome titanate (CrTiO3), SEM, demonstrating formation of rounded particles for both oxides and Spectroscopy in the UV-Visible Region, verifying the potential variation and chromaticity os pigments. Thus, the synthesized oxides were within the requirements to be applied as pigments and shown to be possible to propose its use in ceramic materials
Resumo:
Materials consisting of perovskite-type oxides (ABO3) have been developed in this work for applications in fuel cell cathodes of solid oxide type (SOFC). These ceramic materials are widely studied for this type of application because they have excellent electrical properties, conductivity and electrocatalytic. The oxides LaMnO3, LaFeO3, LaFe0.2Mn0.8O3 e La0.5Fe0.5MnO3 were synthesized by the method of microwave assisted combustion and after sintering at 800°C in order to obtain the desired phases. The powders were characterized by thermogravimetry (TG), X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and voltammetric analysis (cyclic voltammetry and polarization curves). The results obtained by XRF technique showed that the microwave synthesis method was effective in obtaining doping oxides with values near stoichiometric. In general, powders were obtained with particle size less than 0.5 μm, having a porous structure and uniform particle size distribution. The particles showed spherical form, irregular and crowded of varying sizes, according to the analysis of SEM. The behavior of the oxides opposite the thermal stability was monitored by thermogravimetric curves (TG), which showed low weight loss values for all samples, especially those of manganese had its structure. By means of Xray diffraction of the samples sintered at 800°C was possible to observe the formation of powders having high levels of crystallinity. Furthermore, undesirable phases such as La2O3 and MnOx were not identified in the diffractograms. These phases block the transport of oxygen ions in the electrode/electrolyte interface, affecting the electrochemical activity of the system. The voltammetric analysis of the electrocatalysts LF-800, LM-800, LF2M8-800 e L5F5M-800 revealed that these materials are excellent electrical conductors, because it increased the passage of electrical current of the working electrode significantly. Best performance for the oxygen reduction reaction was observed with iron-rich structures, considering that the materials obtained have characteristics suitable for use in fuel cell cathodes of solid oxide type