11 resultados para Ionic strength

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, a micellar system of benzathine penicillin G (BPG) in sodium deoxycholate (NaDC) was developed and evaluated physicochemically. The solubility profile of the drug in water and buffer solutions at various pH was determined, as well as its n-octanol/water partition coefficient. The Critical Micellar Concentration of NaDC and its ability to incorporate BPG were also assessed. The study was carried out at low and high ionic strength which was adjusted by the addition of sodium chloride. The results demonstrated the ability of the micellar system to incorporate BPG, as well as to increase its apparent solubility in water. The enhancement of the solubility of BPG by the presence of NaDC micelles could be analyzed quantitatively within the framework of the pseudo-phase model. Concentration analysis showed that the micellar system could attain up to 90% incorporation of BPG. The incorporated drug is expected to exhibit improved stability, since the antibiotic enclosed in the hydrophobic core of micelles is rather shielded from the aqueous external environment

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Expanded Bed Adsorption (EBA) is an integrative process that combines concepts of chromatography and fluidization of solids. The many parameters involved and their synergistic effects complicate the optimization of the process. Fortunately, some mathematical tools have been developed in order to guide the investigation of the EBA system. In this work the application of experimental design, phenomenological modeling and artificial neural networks (ANN) in understanding chitosanases adsorption on ion exchange resin Streamline® DEAE have been investigated. The strain Paenibacillus ehimensis NRRL B-23118 was used for chitosanase production. EBA experiments were carried out using a column of 2.6 cm inner diameter with 30.0 cm in height that was coupled to a peristaltic pump. At the bottom of the column there was a distributor of glass beads having a height of 3.0 cm. Assays for residence time distribution (RTD) revelead a high degree of mixing, however, the Richardson-Zaki coefficients showed that the column was on the threshold of stability. Isotherm models fitted the adsorption equilibrium data in the presence of lyotropic salts. The results of experiment design indicated that the ionic strength and superficial velocity are important to the recovery and purity of chitosanases. The molecular mass of the two chitosanases were approximately 23 kDa and 52 kDa as estimated by SDS-PAGE. The phenomenological modeling was aimed to describe the operations in batch and column chromatography. The simulations were performed in Microsoft Visual Studio. The kinetic rate constant model set to kinetic curves efficiently under conditions of initial enzyme activity 0.232, 0.142 e 0.079 UA/mL. The simulated breakthrough curves showed some differences with experimental data, especially regarding the slope. Sensitivity tests of the model on the surface velocity, axial dispersion and initial concentration showed agreement with the literature. The neural network was constructed in MATLAB and Neural Network Toolbox. The cross-validation was used to improve the ability of generalization. The parameters of ANN were improved to obtain the settings 6-6 (enzyme activity) and 9-6 (total protein), as well as tansig transfer function and Levenberg-Marquardt training algorithm. The neural Carlos Eduardo de Araújo Padilha dezembro/2013 9 networks simulations, including all the steps of cycle, showed good agreement with experimental data, with a correlation coefficient of approximately 0.974. The effects of input variables on profiles of the stages of loading, washing and elution were consistent with the literature

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chitosan derivatives were prepared by reductive alkylation using glutaraldehyde and 3-amino-1-propanol. The reducing agent used was the sodium borohydride. Tests of solubility, stability and viscosity were performed in order to evaluate these parameters effects in the reaction conditions (molar ratio of the reactants and presence of nitrogen in the reaction system). The molecular structure of commercial chitosan was determined by infrared (IR) and hydrogen nuclear magnetic resonance spectroscopy (1H NMR). The intrinsic viscosity and average molecular weight of the chitosan were determined by viscosimetry in 0.3 M acetic acid aqueous solution 0.2 M sodium acetate at 25 ºC. The derivatives of chitosan soluble in aqueous acidic medium were characterized by 1H NMR. The rheological behavior of the chitosan and of the derivative of chitosan (sample QV), which presented the largest viscosity, were studied as a function of polymer concentration, temperature and ionic strength of the medium. The results of characterization of the commercial chitosan (the degree of deacetylation obtained equal 78.45 %) used in this work confirmed a sample of low molar weight (Mv = 3.57 x 104 g/mol) and low viscosity (intrinsic viscosity = 213.56 mL/g). The chemical modification of the chitosan resulted in derivatives with thickening action. The spectra of 1H NMR of the soluble derivatives in acid aqueous medium suggested the presence of hydrophobic groups grafted into chitosan in function of the chemical modification. The solubility of the derivatives of chitosan in 0.25 M acetic acid aqueous solution decreased with increase of the molar ratio of the glutaraldehyde and 3-amino-1-propanol in relation to the chitosan. The presence of nitrogen and larger amount of reducing agent in reaction system contributed to the increase of the solubility, the stability and the viscosity of the systems. The viscosity of the polymeric suspensions in function of the shear rate increased significantly with polymer concentration, suggesting the formation of strong intermolecular associations. The chitosan presented pseudoplastic behavior with the increase in polymer concentration at a low shear rate. The derivative QV presented pseudoplastic behavior at all concentrations used and in a large range of shear rate. The viscosity of chitosan in solution decreased with an increase of the temperature and with the presence of salt. However, there was an increase of the viscosity of the chitosan solution at higher temperature (65 ºC) and ionic strength of the medium which were promoted by hydrophobic associating of the acetamide groups. The solutions of the chitosan derivatives (sample QV) were significantly more viscous than chitosan solution and showed higher thermal stability in the presence of salt as a function of the hydrophobic groups grafted into chitosan backbone

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hydrolysis reaction in alkaline conditions of the commercial polymer poly(acrylamide-co-metacrylate of 3,5,5-trimethyl-hexane) called HAPAM, containing 0.75 % of hydrophobic groups, was carried out in 0.1 M NaCl and 0.25M NaOH solutions, varying the temperature and reaction time. The polymers were characterized by 1H and 13C Nuclear Magnetic Resonance (NMR), Elemental Analysis and Size Exclusion Chromatography (SEC). The values of the hydrolysis degree were obtained by 13C NMR. The viscosity of HAPAM and HAPAM-10N-R solutions was evaluated as a function of shear rate, ionic strength and temperature. At high polymer concentration (Cp), the viscosity of HAPAM solutions increased with the ionic strength and decreased with the temperature. The viscosity of HAPAM-10N-R solutions increased significantly in distilled water, due to repulsions between the carboxylate groups. At high Cp, with the increase of ionic strength and temperature, occurred a decrease of viscosity, due to mainly the high hydrolysis degree and the low amount of hydrophobic groups. These results indicated that the studied polymers have properties more suitable for the application in Enhanced Oil Recovery (EOR) in low salinity and moderate temperature reservoirs

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Modified polyacrylamides with ≅ 0.2 mol % of N,N-dihexylacrylamide and hydrolysis degree from 0 to 25 % were synthesized by micellar copolymerization. The hydrophobic monomer was obtained by the reaction between acryloyl chloride and N,Ndihexylamine and characterized by infrared (IR) and proton nuclear magnetic resonance (1H NMR) spectroscopy. The polymer molecular structures were determined through 1H and 13C NMR spectroscopy and the polymers were studied in dilute and semi-dilute regimes by viscometry, rheometry, static light scattering and photon correlation spectroscopy, at the temperature range from 25 to 55 ºC. The data obtained by viscometry showed that the intrinsic viscosity from the hydrolyzed polymers is larger than the precursor polymers at the same ionic strength. The comparison between the charged polymers showed that the polymer with higher hydrolysis degree has a more compact structure in formation water (AFS). The increase of temperature led to an enhanced reduced viscosity to the polymers in Milli-Q water (AMQ), although, in brine, only the unhydrolyzed polymer had an increase in the reduced viscosity with the temperature, and the hydrolyzed derivatives had a decrease in the reduced viscosity. The static light scattering (SLS) analyses in salt solutions evidenced a decrease of weight-average molecular weight (⎯Mw) with the increase of the hydrolysis degree, due to the reduction of the thermodynamic interactions between polymer and solvent, which was evidenced by the decrease of the second virial coefficient (A2). The polymers showed more than one relaxation mode in solution, when analyzed by photon correlation spectroscopy, and these modes were attributed to isolated coils and aggregates of several sizes. The aggregation behavior depended strongly on the ionic strength, and also on the temperature, although in a lower extension. The polymers showed large aggregates in all studied conditions, however, their solutions did not displayed a good increase in water viscosity to be used in enhanced oil recovery (EOR) processes

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The role of carboxymethylcellulose (CMC) in association to calcium carbonate particles (CaCO3) in most water-based drilling fluids is to reduce the fluid loss to the surrounding formation. Another essential function is to provide rheological properties capable of maintaining in suspension the cuttings during drilling operation. Therefore, it is absolutely essential to correlate the polymer chemical structure (degree of substitution, molecular weight and distribution of substituent) with the physical-chemical properties of CaCO3, in order to obtain the better result at lower cost. Another important aspect refers to the clay hydration inhibitive properties of carboxymethylcellulose (CMC) in drilling fluids systems. The clay swelling promotes an undesirable damage that reduces the formation permeability and causes serious problems during the drilling operation. In this context, this thesis consists of two main parts. The first part refers to understanding of interactions CMC-CaCO3, as well as the corresponding effects on the fluid properties. The second part is related to understanding of mechanisms by which CMC adsorption occurs onto the clay surface, where, certainly, polymer chemical structure, ionic strength, molecular weight and its solvency in the medium are responsible to affect intrinsically the clay layers stabilization. Three samples of carboximetilcellulose with different molecular weight and degree of substitution (CMC A (9 x 104 gmol DS 0.7), CMC B (2.5 x 105 gmol DS 0.7) e CMC C (2.5 x 105 gmol DS 1.2)) and three samples of calcite with different average particle diameter and particle size distribution were used. The increase of CMC degree of substitution contributed to increase of polymer charge density and therefore, reduced its stability in brine, promoting the aggregation with the increase of filtrate volume. On the other hand, the increase of molecular weight promoted an increase of rheological properties with reduction of filtrate volume. Both effects are directly associated to hydrodynamic volume of polymer molecule in the medium. The granulometry of CaCO3 particles influenced not only the rheological properties, due to adsorption of polymers, but also the filtration properties. It was observed that the lower filtrate volume was obtained by using a CaCO3 sample of a low average size particle with wide dispersion in size. With regards to inhibition of clay swelling, the CMC performance was compared to other products often used (sodium chloride (NaCl), potassium chloride (KCl) and quaternary amine-based commercial inhibitor). The low molecular weight CMC (9 x 104 g/mol) showed slightly lower swelling degree compared to the high molecular weight (2.5 x 105 g/mol) along to 180 minutes. In parallel, it can be visualized by Scanning Electron Microscopy (SEM) that the high molecular weight CMC (2.5 x 105 g/mol e DS 0.7) promoted a reduction in pores formation and size of clay compared to low molecular weight CMC (9.0 x 104 g/mol e DS 0.7), after 1000 minutes in aqueous medium. This behavior was attributed to dynamic of interactions between clay and the hydrodynamic volume of CMC along the time, which is result of strong contribution of electrostatic interactions and hydrogen bounds between carboxylate groups and hydroxyls located along the polymer backbone and ionic and polar groups of clay surface. CMC adsorbs on clay surface promoting the skin formation , which is responsible to minimize the migration of water to porous medium. With the increase of degree of substitution, it was observed an increase of pores onto clay, suggesting that the higher charge density on polymer is responsible to decrease its flexibility and adsorption onto clay surface. The joint evaluation of these results indicate that high molecular weight is responsible to better results on control of rheological, filtration and clay swelling properties, however, the contrary effect is observed with the increase of degree of substitution. On its turn, the calcite presents better results of rheological and filtration properties with the decrease of average viii particle diameter and increase of particle size distribution. According to all properties evaluated, it has been obvious the interaction of CMC with the minerals (CaCO3 and clay) in the aqueous medium

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dispersions composed of polyelectrolyte complexes based on chitosan and poly(methacrylic acid), PMAA, were obtained by the dropping method and template polymerization. The effect of molecular weight of PMAA and ionic strength on the formation of chitosan/poly(methacrylic acid), CS/PMAA, complexes was evaluated using the dropping method. The increase in molecular weight of PMAA inhibited the formation of insoluble complexes, while the increase in ionic strength first favored the formation of the complex followed by inhibiting it at higher concentrations. The polyelectrolyte complexation was strongly dependent on macromolecular dimensions, both in terms of molecular weight and of coil expansion/contraction driven by polyelectrolyte effect. The resultant particles from dropping method and template polymerization were characterized as having regions with different charge densities: chitosan predominating in the core and poly(methacrylic acid) at the surface, the particles being negatively charged, as a consequence. Albumin was adsorbed on templatepolymerized CS/PMAA complexes (after crosslinking with glutardialdehyde) and pH was controlled in order to obtain two conditions: (i) adsorption of positively charged albumin, and (ii) adsorption of albumin at its isoelectric point. Adsorption isotherms and zeta potential measurements showed that albumin adsorption was controlled by hydrogen bonding/van der Waals interactions and that brushlike structures may enhance adsorption of albumin on these particles

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the well drilling operations problems caused by contamination of the drilling fluid are common. The dissolution of ions from the geological formations affects the rheological and filtration properties of the fluids. These ions shield the charges of ionic polymers, leading to its precipitation. In this work was performed a detailed study on the stability of the properties of aqueous solutions and aqueous drilling fluids in the presence of sulphated and carboxylated polymers, using carboxymethylcellulose and kappa-carrageenan as polymer compounds carboxylated and sulfated model, respectively. The effects of ionic strength of the aqueous medium containing Na+, Mg2+ and Ca2+ on rheological properties of the polymer and drilling fluids solutions were evaluated by varying the concentration of salts, pH and temperature. It was observed that the fluids with κ-carrageenan suffered less influence against the contamination by the ions at pH 9 to 10, even at higher concentrations, but higher influence on pH> 11. The fluids containing carboxymethylcellulose were more sensitive to contamination, with rapid reduction in viscosity and significant increase of the filtrate volume, while the fluid based polymer sulfated kappa-carrageenan showed evidence of interaction with cations and preserve the rheological properties and improved stability the volume of filtrate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the well drilling operations problems caused by contamination of the drilling fluid are common. The dissolution of ions from the geological formations affects the rheological and filtration properties of the fluids. These ions shield the charges of ionic polymers, leading to its precipitation. In this work was performed a detailed study on the stability of the properties of aqueous solutions and aqueous drilling fluids in the presence of sulphated and carboxylated polymers, using carboxymethylcellulose and kappa-carrageenan as polymer compounds carboxylated and sulfated model, respectively. The effects of ionic strength of the aqueous medium containing Na+, Mg2+ and Ca2+ on rheological properties of the polymer and drilling fluids solutions were evaluated by varying the concentration of salts, pH and temperature. It was observed that the fluids with κ-carrageenan suffered less influence against the contamination by the ions at pH 9 to 10, even at higher concentrations, but higher influence on pH> 11. The fluids containing carboxymethylcellulose were more sensitive to contamination, with rapid reduction in viscosity and significant increase of the filtrate volume, while the fluid based polymer sulfated kappa-carrageenan showed evidence of interaction with cations and preserve the rheological properties and improved stability the volume of filtrate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis presents the synthesis, characterization and study of the associative behaviour in aqueous media of new responsive graft copolymers, based on carboxymethylcellulose as the water-soluble backbone and Jeffamine® M-2070 e Jeffamine® M-600 (commercial polyetheramines) as the thermoresponsive grafts with high cloud point temperatures in water. The synthesis was performed on aqueous medium, by using 1-ethyl-3- (3-(dimethylamino)-propyl)carbodiimide hydrochloride and N-hydroxysuccinimide as activators of the reaction between carboxylategroupsfrom carboxymethylcellulose and amino groups from polyetheramines. The grafting reaction was confirmed by infrared spectroscopy and the grafting percentage by 1H NMR. The molar mass of the polyetheramines was determined by 1H NMR, whereas the molar mass of CMC and graft copolymers was determined by static light scattering. The salt effect on the association behaviour of the copolymers was evaluated in different aqueous media (Milli-Q water, 0.5M NaCl, 0.5M K2CO3 and synthetic sea water), at different temperatures, through UV-vis, rheology and dynamic light scattering. None of the copolymers solutions, at 5 g/L, turned turbid in Milli-Q water when heated from 25 to 95 °C, probably because of the increase in hydrophibicity promoted by CMC backbone. However, they became turbid in the presence of salts, due to the salting out effect, where the lowest cloud point was observed in 0.5M K2CO3, which was attributed to the highest ionic strength in water, combined to the ability of CO3 2- to decrease polymer-solvents interactions. The hydrodynamic radius and apparent viscosity of the copolymers in aqueous medium changed as a function of salts dissolved in the medium, temperature and copolymer composition. Thermothickening behaviour was observed in 0.5M K2CO3 when the temperature was raised from 25 to 60°C. This performance can be attributed to intermolecular associations as a physical network, since the temperature is above the cloud point of the copolymers in this solvent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, a micellar system of benzathine penicillin G (BPG) in sodium deoxycholate (NaDC) was developed and evaluated physicochemically. The solubility profile of the drug in water and buffer solutions at various pH was determined, as well as its n-octanol/water partition coefficient. The Critical Micellar Concentration of NaDC and its ability to incorporate BPG were also assessed. The study was carried out at low and high ionic strength which was adjusted by the addition of sodium chloride. The results demonstrated the ability of the micellar system to incorporate BPG, as well as to increase its apparent solubility in water. The enhancement of the solubility of BPG by the presence of NaDC micelles could be analyzed quantitatively within the framework of the pseudo-phase model. Concentration analysis showed that the micellar system could attain up to 90% incorporation of BPG. The incorporated drug is expected to exhibit improved stability, since the antibiotic enclosed in the hydrophobic core of micelles is rather shielded from the aqueous external environment