3 resultados para Interpreting graphs
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Hebb proposed that synapses between neurons that fire synchronously are strengthened, forming cell assemblies and phase sequences. The former, on a shorter scale, are ensembles of synchronized cells that function transiently as a closed processing system; the latter, on a larger scale, correspond to the sequential activation of cell assemblies able to represent percepts and behaviors. Nowadays, the recording of large neuronal populations allows for the detection of multiple cell assemblies. Within Hebb's theory, the next logical step is the analysis of phase sequences. Here we detected phase sequences as consecutive assembly activation patterns, and then analyzed their graph attributes in relation to behavior. We investigated action potentials recorded from the adult rat hippocampus and neocortex before, during and after novel object exploration (experimental periods). Within assembly graphs, each assembly corresponded to a node, and each edge corresponded to the temporal sequence of consecutive node activations. The sum of all assembly activations was proportional to firing rates, but the activity of individual assemblies was not. Assembly repertoire was stable across experimental periods, suggesting that novel experience does not create new assemblies in the adult rat. Assembly graph attributes, on the other hand, varied significantly across behavioral states and experimental periods, and were separable enough to correctly classify experimental periods (Naïve Bayes classifier; maximum AUROCs ranging from 0.55 to 0.99) and behavioral states (waking, slow wave sleep, and rapid eye movement sleep; maximum AUROCs ranging from 0.64 to 0.98). Our findings agree with Hebb's view that assemblies correspond to primitive building blocks of representation, nearly unchanged in the adult, while phase sequences are labile across behavioral states and change after novel experience. The results are compatible with a role for phase sequences in behavior and cognition.
Resumo:
This study will present the results of an investigation of how the history of mathematics and theater can contribute to the construction of mathematical knowledge of students in the 9th year of elementary school, through the experience, preparation and execution of a play, beyond presentation of the script. This brings a historical approach, defining space and time of events, putting the reader and viewer to do the route in the biography of Thales of Miletus (624-546 a.C), creating situations that led to the study and discussion of the content related to the episode possible to measure the height of the pyramid Khufu and the Theorem of Thales. That said, the pedagogical proposal implemented in this work was based on theoretical and methodological assumptions of the History of Mathematics and Theatre, drawing upon authors such as Mendes (2006), Miguel (1993), Gutierre (2010), Desgrandes (2011), Cabral (2012). Regarding the methodological procedures used qualitative research because it responds to particular issues, analyzing and interpreting the data generated in the research field. As methodological tools we have used participant observation, the questionnaire given to the students, field diary and dissertativos texts produced by students. The processing and analysis of data collected through the questionnaires were organized, classified and quantified in tables and graphs for easy viewing, interpretation, understanding and analysis of data. Data analysis corroborated our hypothesis and contributed to improving the use and display of the play as a motivating activity in mathematics classrooms. Thus, we consider that the script developed, ie the educational product proposed will bring significant contributions to the teaching of Mathematics in Primary Education
Resumo:
Hebb proposed that synapses between neurons that fire synchronously are strengthened, forming cell assemblies and phase sequences. The former, on a shorter scale, are ensembles of synchronized cells that function transiently as a closed processing system; the latter, on a larger scale, correspond to the sequential activation of cell assemblies able to represent percepts and behaviors. Nowadays, the recording of large neuronal populations allows for the detection of multiple cell assemblies. Within Hebb's theory, the next logical step is the analysis of phase sequences. Here we detected phase sequences as consecutive assembly activation patterns, and then analyzed their graph attributes in relation to behavior. We investigated action potentials recorded from the adult rat hippocampus and neocortex before, during and after novel object exploration (experimental periods). Within assembly graphs, each assembly corresponded to a node, and each edge corresponded to the temporal sequence of consecutive node activations. The sum of all assembly activations was proportional to firing rates, but the activity of individual assemblies was not. Assembly repertoire was stable across experimental periods, suggesting that novel experience does not create new assemblies in the adult rat. Assembly graph attributes, on the other hand, varied significantly across behavioral states and experimental periods, and were separable enough to correctly classify experimental periods (Naïve Bayes classifier; maximum AUROCs ranging from 0.55 to 0.99) and behavioral states (waking, slow wave sleep, and rapid eye movement sleep; maximum AUROCs ranging from 0.64 to 0.98). Our findings agree with Hebb's view that assemblies correspond to primitive building blocks of representation, nearly unchanged in the adult, while phase sequences are labile across behavioral states and change after novel experience. The results are compatible with a role for phase sequences in behavior and cognition.