2 resultados para Interplanetary spacecraft

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spacecraft move with high speeds and suffer abrupt changes in acceleration. So, an onboard GPS receiver could calculate navigation solutions if the Doppler effect is taken into consideration during the satellite signals acquisition and tracking. Thus, for the receiver subject to such dynamic cope these shifts in the frequency signal, resulting from this effect, it is imperative to adjust its acquisition bandwidth and increase its tracking loop to a higher order. This paper presents the changes in the GPS Orion s software, an open architecture receiver produced by GEC Plessey Semiconductors, nowadays Zarlink, in order to make it able to generate navigation fix for vehicle under high dynamics, especially Low Earth Orbit satellites. GPS Architect development system, sold by the same company, supported the modifications. Furthermore, it presents GPS Monitor Aerospace s characteristics, a computational tool developed for monitoring navigation fix calculated by the GPS receiver, through graphics. Although it was not possible to simulate the software modifications implemented in the receiver in high dynamics, it was observed that the receiver worked in stationary tests, verified also in the new interface. This work also presents the results of GPS Receiver for Aerospace Applications experiment, achieved with the receiver s participation in a suborbital mission, Operation Maracati 2, in December 2010, using a digital second order carrier tracking loop. Despite an incident moments before the launch have hindered the effective navigation of the receiver, it was observed that the experiment worked properly, acquiring new satellites and tracking them during the VSB-30 rocket flight.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To identify the relationship between GPS scintillation in Natal-RN (Brazil) and geomagnetic disturbances of any intensities and variations, this work made analysis of the ionospheric behavior and magnetic indexes (Dst , AE and Bz of the interplanetary magnetic field) concerning to different periods of the solar cycle between 2000 and 2014. Part of the data of this research originated at the UFRN observatory, from a GEC Plessey board connected to an ANP -C 114 antenna, modified by Cornell University’s Space group Plasma Physics in order to operate the ScintMon, a GPS monitoring program. This study, therefore, found several cases of inhibited scintillations after the main phase of magnetic storms, a fact that, along with others, corroborated with categorization of Aarons (1991) and models of disturbed dynamo (according to Bonelli, 2008) and over-shielding penetration, defended by Kelley et al. (1979) and Abdu (2011) [4]. In addition to these findings, different morphologies were noted in such disruptions in the GPS signal in accordance with previous magnetic activities. It also found a moderate relationship (R2 = 0.52) between the Dst rate (concerning to specific time) and the average of S4 through a polynomial function. This finding therefore, corroborating Ilma et al. (2012) [17], is an important evidence that the scintillation GPS are not directly controlled by magnetic induction of storms. Completing this work, this relation did show itself as a way of partial predicting of scintillations.