2 resultados para Innervation

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The parabrachial complex (PB) is an area of the brainstem responsible for the processing and transmission of essential physiologic information for the survival of the organisms. This region is subdivided in approximately nine subregions, considering morphology, cytoarchitectural and functional characteristic. Its neurons have an extensive network of connections with other regions of the nervous system. The objective in this work was to map the retinal projection to the PB and make a citoarchitectonic and neurochemical characterization of this region in the common marmoset (Callithrix jacchus), a primate of the New World. The retinal projections were mapped by anterograde transport of the choleric toxin subunit b (CTb). The citoarchitecture was described through the Nissl method, and the neurochemical characterization was made through immunohistochemical technique to the some neurotransmitters and neuroactives substances present in this neural center. In marmoset PB, in the coronal sections labeled by Nissl method, we found a similar pattern to that evidenced in other animal species. The immunoreactivity against CTb was verified in the PBMv in fibers/terminal, characterizing such as retinal innervations in this area. The immunohistochemical technique reveled that the PB contain cells, fibers and/or terminals immunoreactives to the neuronal nuclear protein, Choline acetyl transferase, nitric oxide synthase, serotonin, enkephalin, substance P, Calcium-binding proteins (calbindin, calretinin e parvalbumin), and glial fibrillary acidic protein. The histochemical technique reveled cells and fibers NADPH-diaphorase reactive. Each one of those substances presented a characteristic pattern of demarcation in PB, and some serve as specific markers of subregions

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The midline/intralaminar nuclei form a remarkable group of nuclei of the medial and dorsal thalamus. The midline nuclei, in rats, comprises the paratenial nuclei (PT), paraventricular (PV), intermediodorsal (IMD), reuniens (Re) and rhomboid (Rh). The intralaminar nuclei comprises the central medial (CM), paracentral (PC), central lateral (CL) and parafascicular (PF). Such nuclei have dense serotonergic innervation originating from the brainstem, especially from the so-called ascending activation system. These nuclei, in turn, send projections to various cortical and subcortical areas, specifically to limbic areas, which suggests the important role of this neurotransmitter in the limbic circuitry. The aim of this study was to characterize the distribution pattern and morphology of serotonin fibers in the nuclei of the midline and intralaminar thalamic of rocky cavy (Kerodon rupestris), a tipical rodent from brazilizan northeast. To reach this aim we used four rock cavies adults. Following the transcardially perfusion with paraformaldehyde and brain microtomy steps was performed immunohistochemistry for serotonin (5-HT), Nissl technique and subsequent achievement and image analysis to characterize the cytoarchitecture of these nuclei and the serotonergic fibers visualized. An analysis was made of Relative Optical Density (ROD) to semi-quantify the concentration of serotonin fibers in the areas of interest. Thus, we observed a cytoarchitectonic arrangement of these nuclei similar to that found in rats. In case of fibers distribution, those immunoreactive to 5-HT were presented in a higher concentration according as ROD in the midline nuclei relative to intralaminar; Re being the core which has a higher pixel value followed by the PV , Rh, IMD and PT. In intralaminar CL showed higher pixels, followed by nuclei CM, PC and PF. The serotonergic fibers were classified as number of varicosities and axon diameter, therefore find three types of fibers distributed through this nuclear complex: fibers rugous, granular and semi-granular. In PV fibers predominated rugous; in PT fibers predominated granular; IMD, CL and PF fibers were represented by semi-granular and Re, Rh, PC and CM fibers showed granular and semi-granular. Morphological characterization of serotonergic fibers and differences in density between the nuclei may suggest different patterns of synaptic organization of this neurotransmitter beyond confirming his large repertoire functional