3 resultados para Inflammatory cytokine
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Compounds derived from fungi has been the subject of many studies in order to broaden the knowledge of their bioactive potential. Polysaccharides from Caripia montagnei have been described to possess anti-inflammatory and antioxidant properties. In this study, glucans extracted from Caripia montagnei mushroom were chemically characterized and their effects evaluated at different doses and intervals of treatment. It was also described their action on colonic injury in the model of colitis induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS), and its action on cells of the human colon carcinoma (HT-29). Compounds extracted of C. montagnei contain high level of carbohydrates (96%), low content of phenolic compounds (1.5%) and low contamination with proteins (2.5%). The (FT-IR) and (NMR) analysis showed that polysaccharides from this species of mushroom are composed of α- and β-glucans. The colonic damage was evaluated by macroscopic, histological, biochemical and immunologic analyses. The results showed a reduction of colonic lesions in all groups treated with the glucans of Caripia montagnei (GCM). GCM significantly reduced the levels of IL-6 (50 and 75 mg/kg, p < 0.05), a major inflammatory cytokine. Biochemical analyses showed that such glucans acted on reducing levels of alkaline phosphatase (75 mg/kg, p < 0.01), nitric oxide (p < 0.001), and myeloperoxidase (p < 0.001). These results were confirmed microscopically by the reduction of cellular infiltration. The increase of catalase activity suggest a protective effect of GCM on colonic tissue, confirming their anti-inflammatory potential. GCM displayed cytostatic activity against HT-29 cells, causing accumulation of cells in G1 phase, blocking the cycle cell progression. Those glucans also showed ability to modulate the adhesion of HT-29 cells to Matrigel® and reduced the oxidative stress. The antiproliferative activity against HT-29 cells displayed by GCM (p <0.001) can be attributed to its cytostatic activity and induction of apoptosis by GCM
Resumo:
Preeclampsia is a disease specific of human pregnancy that affects 3-8% of pregnant women, and it is one of the three leading causes of maternal mortality and morbidity. The disease is characterized by hypertension and proteinuria after the 20th week of gestation. The risk factors for this disease are not completely understood but appear to include dysregulation of the immune response arising from defects in placentation, environmental and genetic factors. This study aimed to determine whether the variation in the amount of proinflammatory cytokine receptors IL-1R2, IL-6R and TNF-αR1 would be involved in preeclampsia. They were recruited women with preeclampsia (n=24) and women who evolved during pregnancy without changes in blood pressure (n=12) were recruited. Clinical and laboratory data were collected. The cytokine receptors (IL-1R2, TNF-αR1 and IL-6R) were assessed in mononuclear cells isolated from peripheral blood using flow cytometry (Control = 8; PE = 24). C-reactive protein (CRP) was determined by CRP ultrasensitive method (Control = 7; PE = 18) was performed using sera pregnant women. Women with preeclampsia had higher weight at the beginning of the pregnancy (p=0.0171) and lower gestational age at delivery (0.0008). Classical monocytes were decreased in preeclampsia but not intermediate or non-classical monocytes. The frequency of IL-1R2 pro inflammatory cytokine receptors is decreased in women with PE only in the subpopulation of non-classical monocytes (p = 0.0011). TNF-αR1 receptor and IL-6R, had a decreased frequency in the three subpopulations of monocyte (classic, intermediate and non-classical) when compared to women with normal pregnancy. An increase in IL-1R2 receptor in TCD4+ lymphocytes, but a decrease in TNF-receptor and IL-6R in women with preeclampsia were found. No differences in the frequency of those receptors in CD3+/CD8+ in preeclampsia. There was no difference in C-reactive protein in preeclampsia. The reduction in the amount of IL-1R2, TNF- αR1 and IL-6R monocytes and lymphocytes can be involved in the regulation of inflammation observed in preeclampsia, contributing to disease.
Resumo:
Compounds derived from fungi has been the subject of many studies in order to broaden the knowledge of their bioactive potential. Polysaccharides from Caripia montagnei have been described to possess anti-inflammatory and antioxidant properties. In this study, glucans extracted from Caripia montagnei mushroom were chemically characterized and their effects evaluated at different doses and intervals of treatment. It was also described their action on colonic injury in the model of colitis induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS), and its action on cells of the human colon carcinoma (HT-29). Compounds extracted of C. montagnei contain high level of carbohydrates (96%), low content of phenolic compounds (1.5%) and low contamination with proteins (2.5%). The (FT-IR) and (NMR) analysis showed that polysaccharides from this species of mushroom are composed of α- and β-glucans. The colonic damage was evaluated by macroscopic, histological, biochemical and immunologic analyses. The results showed a reduction of colonic lesions in all groups treated with the glucans of Caripia montagnei (GCM). GCM significantly reduced the levels of IL-6 (50 and 75 mg/kg, p < 0.05), a major inflammatory cytokine. Biochemical analyses showed that such glucans acted on reducing levels of alkaline phosphatase (75 mg/kg, p < 0.01), nitric oxide (p < 0.001), and myeloperoxidase (p < 0.001). These results were confirmed microscopically by the reduction of cellular infiltration. The increase of catalase activity suggest a protective effect of GCM on colonic tissue, confirming their anti-inflammatory potential. GCM displayed cytostatic activity against HT-29 cells, causing accumulation of cells in G1 phase, blocking the cycle cell progression. Those glucans also showed ability to modulate the adhesion of HT-29 cells to Matrigel® and reduced the oxidative stress. The antiproliferative activity against HT-29 cells displayed by GCM (p <0.001) can be attributed to its cytostatic activity and induction of apoptosis by GCM