1 resultado para Imidazo[1,5-a]azines
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The non-adaptation of the removable partial prosthesis (RPP) base to fibromucosal tissue is caused by resorption of residual ridges (RRR). The onset of bone resorption, which occurs after tooth extraction and continues throughout life, is accelerated by local or systemic factors. Aim: Assess the degree of non-adaptation of removable partial prosthesis saddles and the factors that influence it. Methodology: A sectional study was conducted with 81 patients using RPP who had their prostheses installed between 2003 and 2007 (1 to 5 years of use) at the Faculty of Dentistry of the Universidade Federal do Rio Grande do Norte (UFRN). After anamnese and clinical examination, a cast was made with polyether-based material, using the base of the prosthesis to make the impression. The base of the saddle was loaded with the casting material and positioned in the mouth, applying pressure on the supports. After polymerization, the material was removed from the saddle and measurements were taken at 3 different points using a pachymeter. Results: The non-adaptation of the saddle increased significantly with years of use (p = 0.005). The tooth-tissue supported prostheses obtained higher mean non-adaptation values than those of tooth supported prostheses (p < 0.001). Flaccid mucosa showed the worst non-adaptation results, which were statistically different from resilient mucosa (p < 0.001). The greater the extension of the saddle, the greater the non-adaptation (p < 0.001). The natural tooth antagonistic arch yielded better results than did RPP and total prosthesis (p < 0.001). Saddle non-adaptation at the free end was less near the pillar tooth and greater in the more posterior region (p < 0.001). When adaptation of the supports to the niches was poor, greater saddle non-adaptation occurred than when it was good or fair (p < 0.001). Saddles located in the posterior region of the arch had greater non-adaptation than those in the anterior region (p = 0.023). Conclusion: The mean non-adaptation of the saddle to the residual ridges was 0.27 mm. It can be concluded that, even with the use of RPP, bone height reduction was slight within the 1-5-year period of use. The following are factors that influence adaptation of the RPP saddle base: years of use, age, force transmission path to the alveolar bone, location of the toothless area, antagonistic arch, type of mucosa, adaptation of supports to the niche and extension of the saddle