4 resultados para IONIC PARTITION DIAGRAMS
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Waste generated during the exploration and production of oil, water stands out due to various factors including the volume generated, the salt content, the presence of oil and chemicals and the water associated with oil is called produced water. The chemical composition of water is complex and depends strongly on the field generator, because it was in contact with the geological formation for thousands of years. This work aims to characterize the hydrochemical water produced in different areas of a field located in the Potiguar Basin. We collected 27 samples from 06 zones (400, 600, 400/600, 400/450/500, 350/400, A) the producing field called S and measured 50 required parameter divided between physical and chemical parameters, cations and anions. In hydrochemical characterization was used as tools of reasons ionic calculations, diagrams and they hydrochemical classification diagram Piper and Stiff diagram and also the statistic that helped in the identification of signature patterns for each production area including the area that supplies water injected this field for secondary oil recovery. The ionic balance error was calculated to assess the quality of the results of the analysis that was considered good, because 89% of the samples were below 5% error. Hydrochemical diagrams classified the waters as sodium chloride, with the exception of samples from Area A, from the injection well, which were classified as sodium bicarbonate. Through descriptive analysis and discriminant analysis was possible to obtain a function that differs chemically production areas, this function had a good hit rate of classification was 85%
Resumo:
Waste generated during the exploration and production of oil, water stands out due to various factors including the volume generated, the salt content, the presence of oil and chemicals and the water associated with oil is called produced water. The chemical composition of water is complex and depends strongly on the field generator, because it was in contact with the geological formation for thousands of years. This work aims to characterize the hydrochemical water produced in different areas of a field located in the Potiguar Basin. We collected 27 samples from 06 zones (400, 600, 400/600, 400/450/500, 350/400, A) the producing field called S and measured 50 required parameter divided between physical and chemical parameters, cations and anions. In hydrochemical characterization was used as tools of reasons ionic calculations, diagrams and they hydrochemical classification diagram Piper and Stiff diagram and also the statistic that helped in the identification of signature patterns for each production area including the area that supplies water injected this field for secondary oil recovery. The ionic balance error was calculated to assess the quality of the results of the analysis that was considered good, because 89% of the samples were below 5% error. Hydrochemical diagrams classified the waters as sodium chloride, with the exception of samples from Area A, from the injection well, which were classified as sodium bicarbonate. Through descriptive analysis and discriminant analysis was possible to obtain a function that differs chemically production areas, this function had a good hit rate of classification was 85%
Resumo:
In this work, a micellar system of benzathine penicillin G (BPG) in sodium deoxycholate (NaDC) was developed and evaluated physicochemically. The solubility profile of the drug in water and buffer solutions at various pH was determined, as well as its n-octanol/water partition coefficient. The Critical Micellar Concentration of NaDC and its ability to incorporate BPG were also assessed. The study was carried out at low and high ionic strength which was adjusted by the addition of sodium chloride. The results demonstrated the ability of the micellar system to incorporate BPG, as well as to increase its apparent solubility in water. The enhancement of the solubility of BPG by the presence of NaDC micelles could be analyzed quantitatively within the framework of the pseudo-phase model. Concentration analysis showed that the micellar system could attain up to 90% incorporation of BPG. The incorporated drug is expected to exhibit improved stability, since the antibiotic enclosed in the hydrophobic core of micelles is rather shielded from the aqueous external environment
Resumo:
In this work, a micellar system of benzathine penicillin G (BPG) in sodium deoxycholate (NaDC) was developed and evaluated physicochemically. The solubility profile of the drug in water and buffer solutions at various pH was determined, as well as its n-octanol/water partition coefficient. The Critical Micellar Concentration of NaDC and its ability to incorporate BPG were also assessed. The study was carried out at low and high ionic strength which was adjusted by the addition of sodium chloride. The results demonstrated the ability of the micellar system to incorporate BPG, as well as to increase its apparent solubility in water. The enhancement of the solubility of BPG by the presence of NaDC micelles could be analyzed quantitatively within the framework of the pseudo-phase model. Concentration analysis showed that the micellar system could attain up to 90% incorporation of BPG. The incorporated drug is expected to exhibit improved stability, since the antibiotic enclosed in the hydrophobic core of micelles is rather shielded from the aqueous external environment