5 resultados para INSPECTION ERRORS
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
SOUZA, Anderson A. S. ; SANTANA, André M. ; BRITTO, Ricardo S. ; GONÇALVES, Luiz Marcos G. ; MEDEIROS, Adelardo A. D. Representation of Odometry Errors on Occupancy Grids. In: INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, 5., 2008, Funchal, Portugal. Proceedings... Funchal, Portugal: ICINCO, 2008.
Resumo:
To determine the prevalence of refractive errors in the public and private school system in the city of Natal, Northeastern Brazil. Methods: Refractometry was performed on both eyes of 1,024 randomly selected students, enrolled in the 2001 school year and the data were evaluated by the SPSS Data Editor 10.0. Ametropia was divided into: 1- from 0.1 to 0.99 diopter (D); 2- 1.0 to 2.99D; 3- 3.00 to 5.99D and 4- 6D or greater. Astigmatism was regrouped in: I- with-the-rule (axis from 0 to 30 and 150 to 180 degrees), II- against-the-rule (axis between 60 and 120 degrees) and III- oblique (axis between > 30 and < 60 and >120 and <150 degrees). The age groups were categorized as follows, in: 1- 5 to 10 years, 2- 11 to 15 years, 3- 16 to 20 years, 4- over 21 years. Results: Among refractive errors, hyperopia was the most common with 71%, followed by astigmatism (34%) and myopia (13.3%). Of the students with myopia and hyperopia, 48.5% and 34.1% had astigmatism, respectively. With respect to diopters, 58.1% of myopic students were in group 1, and 39% distributed between groups 2 and 3. Hyperopia were mostly found in group 1 (61.7%) as well as astigmatism (70.6%). The association of the astigmatism axes of both eyes showed 92.5% with axis with-the-rule in both eyes, while the percentage for those with axis againstthe- rule was 82.1% and even lower for the oblique axis (50%). Conclusion: The results found differed from those of most international studies, mainly from the Orient, which pointed to myopia as the most common refractive error, and corroborates the national ones, with the majority being hyperopia
Resumo:
Ensure the integrity of the pipeline network is an extremely important factor in the oil and gas industry. The engineering of pipelines uses sophisticated robotic inspection tools in-line known as instrumented pigs. Several relevant factors difficult the inspection of pipelines, especially in offshore field which uses pipelines with multi-diameters, radii of curvature accentuated, wall thickness of the pipe above the conventional, multi-phase flow and so on. Within this context, appeared a new instrumented Pig, called Feeler PIG, for detection and sizing of thickness loss in pipelines with internal damage. This tool was developed to overcome several limitations that other conventional instrumented pigs have during the inspection. Several factors influence the measurement errors of the pig affecting the reliability of the results. This work shows different operating conditions and provides a test rig for feeler sensors of an inspection pig under different dynamic loads. The results of measurements of the damage type of shoulder and holes in a cyclic flat surface are evaluated, as well as a mathematical model for the sensor response and their errors from the actual behavior
Resumo:
SOUZA, Anderson A. S. ; SANTANA, André M. ; BRITTO, Ricardo S. ; GONÇALVES, Luiz Marcos G. ; MEDEIROS, Adelardo A. D. Representation of Odometry Errors on Occupancy Grids. In: INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, 5., 2008, Funchal, Portugal. Proceedings... Funchal, Portugal: ICINCO, 2008.
Resumo:
To determine the prevalence of refractive errors in the public and private school system in the city of Natal, Northeastern Brazil. Methods: Refractometry was performed on both eyes of 1,024 randomly selected students, enrolled in the 2001 school year and the data were evaluated by the SPSS Data Editor 10.0. Ametropia was divided into: 1- from 0.1 to 0.99 diopter (D); 2- 1.0 to 2.99D; 3- 3.00 to 5.99D and 4- 6D or greater. Astigmatism was regrouped in: I- with-the-rule (axis from 0 to 30 and 150 to 180 degrees), II- against-the-rule (axis between 60 and 120 degrees) and III- oblique (axis between > 30 and < 60 and >120 and <150 degrees). The age groups were categorized as follows, in: 1- 5 to 10 years, 2- 11 to 15 years, 3- 16 to 20 years, 4- over 21 years. Results: Among refractive errors, hyperopia was the most common with 71%, followed by astigmatism (34%) and myopia (13.3%). Of the students with myopia and hyperopia, 48.5% and 34.1% had astigmatism, respectively. With respect to diopters, 58.1% of myopic students were in group 1, and 39% distributed between groups 2 and 3. Hyperopia were mostly found in group 1 (61.7%) as well as astigmatism (70.6%). The association of the astigmatism axes of both eyes showed 92.5% with axis with-the-rule in both eyes, while the percentage for those with axis againstthe- rule was 82.1% and even lower for the oblique axis (50%). Conclusion: The results found differed from those of most international studies, mainly from the Orient, which pointed to myopia as the most common refractive error, and corroborates the national ones, with the majority being hyperopia