2 resultados para Hydrous niobium phosphate
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Lubricants and cutting middle distillates typically have large amounts of n-paraffins to increase its freezing point and fluidity. Accordingly, the removal of n-paraffins of long chain lubricants oils and diesel is essential to get a product with good cold flow properties. The development of new catalysts, which exhibit thermal stability and catalytic activity for the hydroisomerization reaction is still a challenge. Thus, silicoaluminophosphates (SAPO) were synthesized by different routes. Have been used also post-synthesis treatment for obtaining hybrid structures and others synthesis have been carried out with mesoporous template (soft and hard-template). Therefore, SAPO have been impregnated with H2PtCl6 solution by the incipient wetness method. Then assessments of catalytic activities in hydroisomerization and hydrocracking reactions of hexadecane have been held. Besides SAPO, niobium phosphate - NbP - were also impregnated with platinum and evaluated in the same reaction. After impregnation, these catalysts have been characterized by X-ray diffraction (XRD), nitrogen adsorption, infrared spectroscopy with adsorbed pyridine (IV-PY), scanning electron microscopy (SEM) and resonance nuclear magnetic 29Si (29Si-NMR). The characterization results by XRD have shown that it has been possible to obtain mesoporous SAPOs. However, for the syntheses with soft template there was collapse of the structure after removal of the organic template. Even so, these catalysts have been actives. It was possible to obtain hybrid materials through the synthesis of SAPO-11 made with hard templates and by means of post-synthesis treatments samples of SAPO-11. Moreover, NbP has shown characteristic XRD of amorphous materials, with high acidity and were active in the conversion of hexadecane.
Resumo:
Lubricants and cutting middle distillates typically have large amounts of n-paraffins to increase its freezing point and fluidity. Accordingly, the removal of n-paraffins of long chain lubricants oils and diesel is essential to get a product with good cold flow properties. The development of new catalysts, which exhibit thermal stability and catalytic activity for the hydroisomerization reaction is still a challenge. Thus, silicoaluminophosphates (SAPO) were synthesized by different routes. Have been used also post-synthesis treatment for obtaining hybrid structures and others synthesis have been carried out with mesoporous template (soft and hard-template). Therefore, SAPO have been impregnated with H2PtCl6 solution by the incipient wetness method. Then assessments of catalytic activities in hydroisomerization and hydrocracking reactions of hexadecane have been held. Besides SAPO, niobium phosphate - NbP - were also impregnated with platinum and evaluated in the same reaction. After impregnation, these catalysts have been characterized by X-ray diffraction (XRD), nitrogen adsorption, infrared spectroscopy with adsorbed pyridine (IV-PY), scanning electron microscopy (SEM) and resonance nuclear magnetic 29Si (29Si-NMR). The characterization results by XRD have shown that it has been possible to obtain mesoporous SAPOs. However, for the syntheses with soft template there was collapse of the structure after removal of the organic template. Even so, these catalysts have been actives. It was possible to obtain hybrid materials through the synthesis of SAPO-11 made with hard templates and by means of post-synthesis treatments samples of SAPO-11. Moreover, NbP has shown characteristic XRD of amorphous materials, with high acidity and were active in the conversion of hexadecane.