2 resultados para Human Endothelial-cells
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The occurrence of bioactive compounds in marine organisms comes awaking the interest of the pharmaceutical industry. Heparin, a sulfated polysaccharide which presence was already identified in several marine invertebrates, is very attractive due its remarkable functional versatility. Besides to intervene in blood coagulation, this molecule has a great anti-inflammatory potential. However, its strong anticoagulant activity difficult the clinical exploitation of its anti-inflammatory properties. Thus, the aims of this work were to evaluate the effect of a heparin-like compound (heparinoid), isolated from the cephalotorax of the Litopenaeus vannamei shrimp, on the inflammatory response, hemostasia and synthesis of antithrombotic heparan sulfate by endothelial cells, besides studying some aspects concerning its structure. The purified heparinoid was structurally characterized following an analytical boarding, involving electrophoresis and chromatography. The structural analysis have shown that this compound possess a high content of glucuronic acid residues and disulfated disaccharide units. In contrast to mammalian heparin, the heparinoid was incapable to stimulate the synthesis of heparan sulfate by endothelial cells in the tested concentrations, beyond to show reduced anticoagulant activity and hemorrhagic effect. In a model of acute inflammation, the compound isolated from the shrimp reduced more than 50% of the cellular infiltration. Besides reduce the activity of MMP-9 and proMMP-2 of the peritoneal lavage of inflamed animals, the heparinoid also reduced the activity of MMP-9 secreted by activated human leukocytes. These results demonstrate the potential of heparinoid from L. vannamei to intervene in the inflammatory response. For possessing reduced anticoagulant activity and hemorrhagic effect, this compound can serve as a structural model to direct the development of more specific therapeutical agents to the treatment of inflammatory diseases
Resumo:
Periodontal disease is a complex inflammatory and infectious condition that immune host, front of the microbial aggressions, can lead to disease progression, resulting in tissue destruction. The tissue damage induces the release of regulatory molecules, which protective roles and / or destructive, including proteins VEGF (vascular endothelial growth factor vascular) and HIF-1 α (hypoxia-induced factor α -1). Thus, this study investigated, quantitatively and comparatively, the immunohistochemical expression of VEGF (vascular endothelial growth factor) and HIF-1 α (hypoxia induced factor 1-α), proteins involved in inflammation, angiogenesis and hypoxia, in human gingival tissues. Therefore, 75 samples of gingival tissues were examined. Thirty samples were chronic periodontitis, 30 with chronic gingivitis and 15 healthy gingival. After sections analysis, positives and negatives inflammatory and endothelial cells in the connective tissue were counted and converted into percentage. Data were statistically analyzed using Kruskal-Wallis test and Spearman correlation. The results showed that both proteins marked. It was observed higher immunoreactivity for HIF-1 α at chronic gingivitis and periodontitis specimens compared to healthy sites, however, no statistically significant differences were observed among them (p>0.05). The VEGF immunostaining showed similarity among the cases of periodontitis, gingivitis and healthy gingiva. Moderate and positive correlation statistically significant differences were verified for the expressions of VEGF and HIF-1α in gingival health (r = 0,529, p = 0.04). Thus, it can be conclude that possibly the route of HIF-1 α, is activated in periodontal disease may have involvement of the protein in pathogenesis and progression of disease, and that activation of VEGF, can be in addition to being triggered transcription by HIF-1 α may be also influenced by other additional factors such as the action of periodontal microorganisms endotoxins