2 resultados para Hoplias malabaricus
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The fish, Hoplias malabaricus (Osteichthyes: Erythrinidae) and armored catfish, Hypostomus pusarum (Loricariidae) are of freshwater origin from the neotropical region, and are considered ecologically and economically of important. This work investigated the trophic strategies, the morphology and histology of the digestive tract of these fish captured from the Marechal Dutra reservoir, Acari, the semiarid region of Rio Grande do Norte, Brazil. A total of 133 individuals of H. malabaricus and 118 specimens of H. pusarum were analyzed. The two study species occupy different levels in the food chain and spatial distribution in the water column of the reservoir. The results of this study are presented in the form of four scientific papers. The first article describes the morphology and histology of the digestive tract and the feeding habits of H. malabaricus (Bloch, 1794). This fish has a short intestine, with an intestinal coefficient of 0.72 ± 0.09. The dietary importance index indicates that H. malabaricus feeds preferentially on animal matter, especially on fish (72.8%) and prawns (27.2%). The histology of its digestive tract confirms the carnivorous feeding habit. The second article discusses about the pioneering work on the feeding strategy and the characterization of anatomy and histology of the digestive tract of H. pusarum. The intestine of this fish is long, with an intestinal coefficient of 10.8±0.7. The dietary importance index indicates that H. pusarum feeds preferentially on organic matter in decomposition (88.7%) and on filamentous microalgae and diatoms (11.3%). The third article compares the morphological aspects of the digestive tract of H. malabaricus and H. pusarum, in relation to their food habits. The arrangement of the digestive organs in both species is directly related to the shape of the peritoneal cavity and the form of the body. The short intestine of H. malabaricus and the long intestine of H. pusarum are associated with their feeding habits. The morphology of the digestive tracts of H. malabaricus and H. pusarum confirm their food habits, carnivorous and detritivorous / herbivorous, respectively. The fourth article discusses the food and reproductive aspects (length and weight, length-weight relationship, type of growth and sex ratio) of H. pusarum. This species has a negatively allometric growth, with the predominance of females in the sampled population. H. malabaricus inhabits the pelagic environment and is a carnivore, while H. pusarum, lives in the benthic environment and is characterized as a detritivore/herbivore. Each species studied shows a very different diet, without trophic competition between them. The morphological and anatomical structures of the digestive tract reflect their feeding strategy.
Resumo:
The diversity of fish species from South America has been affected by various anthropogenic practices. Some studies have reported the influence that illegal transferring or introduction of exotic species have on the trophic webs of continental lakes. The loss of diversity on fish populations and consequent impacts on fishery are commonly evidenced in these cases. The Brazilian Northeast has ponds for which exotic Amazonian species were transferred as Extremoz Lake. These environments serve as study models for comparison and investigation about the possible impacts of these introductions. We tested the hypothesis that loss of species that this trend can be related with the insertion of the genus Cichla, commonly documented as top predator in its endemic environment. Possible structural causes that interfere in other processes such as migration were also investigated. Thus, the local ecological knowledge of fishermen and a current ecotrophic model were used. We took samples of phytoplankton, zooplankton and fishes during two annual cycles. Concurrently, we made interviews with the fishing community. In fact, there are relations between the loss of fish and the insertion of peacock bass in Extremoz Lake. However, Cichla kelberi was not indicated as primary factor to explain fish species decline. The construction of bridges located in the Rio Doce was main factor for respondents and what explains loss of species. The migration of saltwater fish and / or from the river to Extremoz Lake is hindered by the unsuitability of the crossing-streams that are under these structures. According to the ecotrophic model Hoplias malabaricus was considered key-species and Cichla kelberi top predator. This last trend was similarly noticed in the stomach and local ecological knowledge of fishermen analysis. Overfishing simulations to Cichla kelberi resulted that only raising its captures in 200%, other native species would increase their biomass values only 15 to 30% (in 6 years).The negative effects of the alien species introduction without prior studies and lack of investments in appropriating these constructions to the needs of the fish fauna structures seem to act simultaneously. Both are causing the decline of fish species richness and consequent local artisanal fishery collapse