3 resultados para High-power devices
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Microstrip antennas are widely used in modern telecommunication systems. This is particularly due to the great variety of geometries and because they are easily built and integrated to other high frequency devices and circuits. This work presents a study of the properties of the microstrip antenna with an aperture impressed in the conducting patch. Besides, the analysis is performed for isotropic and anisotropic dielectric substrates. The Multiport Network Model MNM is used in combination with the Segmentation Method and the Greens function technique in the analysis of the considered microstrip antenna geometries. The numerical analysis is performed by using the boundary value problem solution, by considering separately the impedance matrix of the structure segments. The analysis for the complete structure is implemented by choosing properly the number and location of the neighboor element ports. The numerial analysis is performed for the following antenna geometries: resonant cavity, microstrip rectangular patch antenna, and microstrip rectangular patch antenna with aperture. The analysis is firstly developed for microstrip antennas on isotropic substrates, and then extended to the case of microstrip antennas on anisotropic substrates by using a Mapping Method. The experimental work is described and related to the development of several prototypes of rectangular microstrip patch antennas wtih and without rectangular apertures. A good agreement was observed between the simulated and measured results. Thereafter, a good agreement was also observed between the results of this work and those shown in literature for microstrip antennas on isotropic substrates. Furthermore, results are proposed for rectangular microstrip patch antennas wtih rectangular apertures in the conducting patch
Resumo:
The nanometric powders have special features that usually result in new properties, originating applications or expanding them in various fields of knowledge. Because having a high area/volume ratio, phenomena such as superficial strength of adsorption becomes greater than the weight of the powder which makes more difficult its handling. The high power of agglomeration of these powders requires study and development of equipments to enable its management into the plasma torch. The objective of this work is to develop a powder feeder which can solve the mainly problems about insertion of powder into the thermal spray developed in the laboratory of plasmas, which are carried out with plasma torch arc not transferred (plasma spray). Therefore, it was made a aluminum s powder feeder and tests were performed to verify their operation and determine its rate of deposition by spraying powders of niobium pentoxide (Nb2O5) and titanium dioxide (TiO2) with particle sizes less than 250 mesh (<0.063 mm). We used masses of 0.5 g - 1.0 g and 1.5 g of each powder in tests lasting 15 seconds - 20 to 25 seconds for each mass. The tests were performed in two ways: at atmospheric pressure using argon gas with a flow of 9 l / min as carrier gas and through a Venturi pipe also using argon gas with a flow of 9 l / min as carrier gas and with a flow of 20 l/min as the feed gas passing through the Venturi pipe. The powder feeder developed in this paper is very easy to be handling and building, resulting in feeding rate of 0.25 cm3/min - 1.37 cm3/min. The TiO2 showed higher feeding rates than the Nb2O5 in all tests, and the best rates were obtained with tests using mass 1.5 g and time of 15 seconds, reaching feeding rate of 1.37 cm3/min. The flow of feed had low interference in feeding rate during the tests
Resumo:
In today`s society the use of so-called information technology and communication (ICT), is promoting a revolution in the forms of teaching and learning through the methods of distance learning courses, especially in higher education. Studies show that students in this way have great difficulties in the learning process, especially when dealing with experimental subjects that require high power of abstraction as chemistry. The goal of this work is to promote improvement in the teaching and learning in the discipline Chemistry of Life offered for the Bachelor`s Degree in Chemistry in distance UFRN. For this we analyzed evidence of the semester 2011.2, in order to identify what are the main difficulties of the students on the assessments. That`s why video lessons related to matters that create the majority of difficulties for students were developed, the final product this work. Being obtained the improvements by video classes in the learning process of the students, from a questionnaire answered by the students in the virtual learning environment, and from their success rate at the end of the course