14 resultados para High density ceramic bodies

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The calcium phosphate ceramics have been very investigated as material for bone implants. The tricalcium phosphate (β-TCP) had a great potential for application in temporary implants like a resorbable bioceramic. This material presents a limitation in its sintering temperature due to occurrence of the allotropic transformation β → α at temperatures around 1200°C, not allowing the attainment of dense ceramic bodies. This transformation also causes cracks, what diminishes the mechanical strength, limiting its use to applications of low mechanical requests. This work studies the influence of the addition of manganese oxide in the sintering of β-TCP. Two processing routes were investigated. The first was the powder metallurgy conventional process. The test bodies (samples) were pressed and sintering at temperatures of 1200 and 1250°C. The second route was uniaxial hot pressing and its objective was to obtain samples with high relative density. The samples were physically characterized through density and porosity measurements. The thermal behavior was studied through dilatometric, thermal differential and thermogravimetric analysis. The mechanical properties were characterized by three point flexure test and Vickers microhardness measurements. The microstructure was analyzed by scanning electron microscopy. The addition of manganese oxide caused an improvement of the mechanical strength in relation to the material without additive and promoting the stabilization of β-TCP to greater temperatures

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sludge of Wastewater Treatment Plants (WTPs) disposal is a problem for any municipality, for this reason the amount of sludge production is now a key issue in selecting treatment methods. It is necessary to investigate new applications for this waste type, due to the restrictions imposed by the environmental organs. The raw materials used in the Red Ceramic, are generally very heterogeneous, for this reason, such materials can tolerate the presence of different types of wastes. In Rio Grande do Norte, the roof tiles production corresponds to 60,61% from the total of ceramic units produced. Due to the importance of the ceramic industry of roof tiles for the state, allied to the environmental problem of the sludge disposal, this work had for objective to verify the possibility of the incorporation of sewage sludge in ceramic body used for production of roof tiles. In the research, sludge originating from drying beds of WTP of the Central Campus from UFRN and clays originating from a ceramic industry from Goianinha/RN were used. The raw materials were characterized by techniques of: analysis of particles distribution by diffraction to laser; real density; consistence limits; chemical analysis by X-ray fluorescence; mineralogical analysis by X-ray diffraction; organic matter; and solids content. Five batches of roof tiles were manufactured in the approximate dosages of 2%, 4%, 6%, 8% and 10%. To evaluate the properties of each final product, tests of water absorption, impermeability, bending strength, leachability and solubility were accomplished. The roof tiles manufactured with sludge presented characteristics similar to the roof tiles without sludge in relation to the environmental risk. The results showed that it is possible to use approximately up to 4% of sludge in ceramic bodies for production of roof tiles. However, it is observed that the high amount of organic matter (71%) present in the sludge is shown as factor that limits the sludge incorporation in ceramic bodies, worsening the quality of the roof tiles. It is necessary the use of mixtures of different raw materials under point of view of the granulometry and of the other chemical and mineralogical properties for the obtaining of a satisfactory mass to the production of ceramic roof tiles

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The WTP produce many kinds of residue on your treatment stages, but the sludge is the more problematic from the final disposition point view. The actual rate of residue production deriving from technological evolution and the crescent population needs prevents the subtle equilibrium generation between consumption and recycling/reuse, creating problems of pollution resulting from inappropriate management of residues. Thus, is necessary achieve a new equilibrium between the grow from raw materials and energy and the residue generation. This equilibrium should be achieved by technical and economic feasibility of environmental supported models through recycling and reuse. The red ceramic industry stand out in residue absorption question as raw material due their clay mass heterogeneity, constituted by clay minerals and non-clay minerals with wide mineralogical variation, allowing residue inclusion which act like plastic or non-plastic materials, contributing to retain heavy metals contained in residues in the vitreous mass formed during the burning of the ceramic bodies. This work propose the study of the influence of incorporation of 25 wt.% sludge from wastewater treatment plant, according preliminary results, in the mass to produce ceramic bodies. The raw materials was characterized through chemical composition analyses by XRF, mineralogical analyses by XRD, thermal analyses by TG and DTA, Atterberg limits and thermodilatometry. Subsequently was composed the mass with 75 wt.% of clay and 25 wt.% of dried wastewater sludge from UFRN WWTP. Samples with 6,0 x 2,0 x 0,5 cm was produced with unidirectional compacting under pressure of 20MPa and burned in temperatures between 950 and 1,200ºC. After fired, the ceramic bodies have been submitted to physical and mechanical analyses through the measure of firing shrinkage, water absorption, density, apparent porosity and flexural strength; crystallographic analyses through XRD and microstructure analyses by SEM. The technological properties obtained was satisfactory to production of roof tiles with 25 wt.% at 1,200 ºC, but the production of others products at lower temperatures was not feasible

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Piauí state is a major producer of traditional red ceramic burning as bricks, tiles and ceramic tiles, with its main production center located in the city of Teresina. The state has large reserves of raw materials that can be used in the ceramic coating as clays, quartz, talc and carbonates. However, in the preparation of ceramic bodies using only a mixture of clays with different characteristics. The study aims to evaluate the effect of adding two types of carbonates in the ceramic semiporous mass coating produced in Piauí and then to verify the potential use of these carbonates as supplementary raw material product manufactured or the feasibility of obtaining a ceramic plate that meets the specifications for the porous coating. For this, were characterized the ceramic Piauí coating mass, a calcitic carbonate and a dolomitic, were made in the levels of 2, 4, 8, 16, and 32%. The masses were formed by pressing and burneds in two environments: a laboratory furnace (1080°C, 1120°C, 1140°C, and 1160°C) and an industrial furnace (1140°C). Then, following tests of linear shrinkage water absorption, apparent porosity, bulk density and flexural strength. Furthermore, the fired specimens were tested for their macrostructure and microstructure. The results showed the possibility of using the carbonate in ceramic mass flooring produced in Piauí, as added in small proportions improved dimensional stability and increased mechanical strength of ceramics pieces. It also proved itself possible to produce porous coating when added in higher levels

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The power industry generates as waste ceramic bodies of electrical fuses that are discarded after use. The formulation of ceramic bodies for porcelain electrical insulators using waste from the bodies fuse allocation promotes environmentally appropriate, through the reuse of the material. This work evaluated the technical feasibility of using waste for use in electrical porcelains with formulations containing the residue, feldspar and kaolinite. The raw materials were processed through grinding and sieving to 200 mesh. The ceramic material obtained from the proposed formulations with 25%, 30%, 34% and 40% of the residue went through a vibratory mill for grinding and homogenization, and then were sieved at 325 mesh. The samples were shaped in a uniaxial press, with the application of 25 MPa and sintered at 1100° C, 1150°C, 1200°C, 1225°C and 1250°C, at levels of 20 and 45 minutes. Were also developed bodies of evidence with reference formulations obtained without residue, to establish a comparison on physical, mechanical and electrical. The tests were conducted and technology: linear shrinkage, porosity, water absorption, resistance to bending to three points, measuring insulation resistance electrical resistivity of the material, X-ray diffraction and X-ray fluorescence Waste characterizations pointed to the existence of two phases: mullite and quartz phases are of great importance in the microstructure of the ceramic and this fact reveals a possibility for reuse in electrical porcelains. The mullite is an important constituent because it is a phase that makes it possible to increase the mechanical strength in addition to the body allows the use at high temperatures. The use of ceramic bodies residue fuses, proved feasible for application in electrical porcelain and the most significant results were obtained by the formulations with 25% waste and sintering at 1200°C

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work has for objective study compared the characteristics and technological properties of ceramic bodies from the region of Seridó-RN. The region under study has identified 23 cities where they were 80 ceramics industries. To define the universe of search, there was a survey of pottery that are part of APL Seridó next to the IEL. The characteristics and operating conditions of ceramics industries of the region were identified through a socio-economic questionnaire applied locally, which addressed issues such as: profiles of companies, production process etc. The analysis of information collected from 24 companies identified in seven cities shows that the vast majority of industries is small, with family structure, obsolete equipment and labo, little qualified. Most of the pottery works with low technical knowledge, poor control of the production process and product technology. The raw collected were submitted to analysis of X ray diffraction, chemical composition, termical analysis, particle size distribution and plasticity. Then were produced five formulations and made by uniaxial pressure at 25 MPa for firing in temperatures varying from 850 to 1050 °C. The firing technological properties evaluated were: mass loss to fire, lineal shrinkage, apparent density, apparent porosity, water absorption and flexural strength (3 points). The results indicated that the raw materials from the region have significant similarities in the composition chemical and mineralogical. Furthermore, it indicates the possibility of the use of cycles of firing faster and efficient than the current, limited to some clay mass burning of certain conditions

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The segment of the structural ceramics industry is one of the most important to the economy of Rio Grande do Norte. The supply chain makes a total of 206 companies that are distributed in 39 counties, concentrated in three regional centers: Seridó Apodi / Assu and great Natal. The ceramic industry in the state is around 80 million pieces per month, with 50,186 million of these tiles, which makes the Rio Grande do Norte one of the largest manufacturers of product in the Country. Different ceramic products can be manufactured by mixing two or more clays and accessory minerals. Mixtures acquire characteristics and form what is called the ceramic body. Refractory masses have a high melting point and thermal shock support. Its composition contains refractory clays with a little iron oxide and material fluxes. A line of semi-refractory ceramic products that stands out for its high added value are the bricks in ivory or red, used in building barbecues, fireplaces, wood stoves and braziers. The aim of this study was to use alumina-clay or silica- alumina-clay to the industrial RN, for the production of refractory bricks semi-refractory burning light. Clay and Kaolin were characterized for their chemical and mineralogical composition, immediately after ceramic bodies were made with different concentrations of the components, they were raised, pressed and sintered. After sintering the resulting products were characterized in terms of mechanical, thermal and dimensional than the characterization by X-ray diffraction and scanning electron microscopy. After obtaining the results, we concluded that the studied clay can be used for the production of semi-refractory bricks

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aims at studying the influence of the concentration of calcite, its grain size and sintering temperature to obtain porous coating formulations that meet the design specifications. The experiments involved the physical-chemical and mineralogical caracterization of the raw materials, and mechanical tests on specimens dried and sintered, performing a planning mixture and factorial experiment, using the response surface methodology. The ceramic bodies studied were prepared by dry process, characterized, placed in conformity by uniaxial pressing and sintered at temperatures of 940 º C, 1000ºC, 1060ºC, 1120°C and 1180°C using a fast-firing cycle. The crystalline phases formed during sintering at temperatures under study, revealed the presence of anorthite and wolastonite, and quartz-phase remaining. These phases were mainly responsible for the physical and mechanical properties of the sintered especimens. The results shown that as increases the participation of carbonate in the composition of ceramic bodies there is an increase of water absorption and a slight reduction in linear shrinkage for all sintering temperatures. As for the mechanical strength it was observed that it tended to decrease for sintering at temperatures between 940 ° C and 1060 ° C and to increase for sintering at temperatures above 1060 ° C occurring with greater intensity for compositions with higher content of calcite. The resistence decreased with increasing participation of quartz in all sintering temperatures. The decrease in grain size of calcite caused a slight increase in water absorption for formulation with the same concentration of carbonate, remaining virtually unchanged the results of linear shrinkage and mechanical strength. In conclusion, porous ceramic coating (BIII) can be obtained using high concentrations of calcite and keeping the properties required in technical standards and that the particle size of calcite can be used as tuning parameter for the properties of ceramic products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is great difficulty in forming a composite refractory metal niobium with copper. This is due to the fact that Nb-Cu system is almost mutually immiscible and may be neglected solubility between them. These properties hinder or prevent obtaining homogeneous and high-density structures, conventionally prepared. This study aims to analyze the use of high-energy milling process (MAE) to implement these natural difficulties, with regard to the densification of the sintered bodies. The MAE and the press were used in the preparation of powders, to obtain a fine and homogeneous distribution of the grain size. Four loads Nb and Cu powders containing 15% by weight of Cu were then milled for MAE in a planetary type ball mill under various milling times and speeds. The results obtained by MAE were analyzed by scanning electron microscopy (SEM), according to the parameters of time and grinding speed. The samples were compacted under pressure of 200 MPa, were then sintered in liquid phase in a vacuum furnace at temperatures of 1100 ° C / 60 min and 1200 ° C / 60 min. Then it was used to characterize diffraction of X-rays to identify the phases. The microstructures of the sintered samples were observed and evaluated using scanning electron microscopy (SEM). Vickers Microhardness tests were performed, obtaining higher values for the sintered bodies in the largest of the post milling times and the larger grinding speeds. It was found that the liquid phase sintering of the samples that were processed by MAE produced at the end of a homogeneous and densified structure in 77,4% relative to the value of the theoretical density of the composite

Relevância:

100.00% 100.00%

Publicador:

Resumo:

From an economic standpoint, the powder metallurgy (P/M) is a technique widely used for the production of small parts. It is possible, through the P/M and prior comminution of solid waste such as ferrous chips, produce highly dense sintered parts and of interest to the automotive, electronics and aerospace industries. However, without prior comminution the chip, the production of bodies with a density equal to theoretical density by conventional sintering techniques require the use of additives or significantly higher temperatures than 1250ºC. An alternative route to the production of sintered bodies with high density compaction from ferrous chips (≤ 850 microns) and solid phase sintering is a compression technique under high pressure (HP). In this work, different compaction pressures to produce a sintered chip of SAE 1050 carbon steel were used. Specifically, the objective was to investigate them, the effect of high pressure compression in the behavior of densification of the sintered samples. Therefore, samples of the chips from the SAE 1050 carbon steel were uniaxially cold compacted at 500 and 2000 MPa, respectively. The green compacts obtained were sintered under carbon atmosphere at 1100 and 1200°C for 90 minutes. The heating rate used was 20°C/min. The starting materials and the sintered bodies were characterized by optical microscopy, SEM, XRD, density measurements (geometric: mass/volume, and pycnometry) and microhardness measurements Vickers and Rockwell hardness. The results showed that the compact produced under 2000 MPa presented relative density values between 93% and 100% of theoretical density and microhardness between 150 HV and 180 HV, respectively. In contrast, compressed under 500 MPa showed a very heterogeneous microstructure, density value below 80% of theoretical density and structural conditions of inadequate specimens for carrying out the hardness and microhardness measurements. The results indicate that use of the high pressure of ferrous chips compression is a promising route to improve the sinterability conditions of this type of material, because in addition to promoting greater compression of the starting material, the external tension acts together with surface tension, functioning as the motive power for sintering process. Additionally, extremely high pressures allow plastic deformation of the material, providing an intimate and extended contact of the particles and eliminating cracks and pores. This tends to reduce the time and / or temperature required for good sintering, avoiding excessive grain growth without the use of additives. Moreover, higher pressures lead to fracture the grains in fragile or ductile materials highly hardened, which provides a starting powder for sintering, thinner, without the risk of contamination present when previous methods are used comminution of the powder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In States of Paraíba (PB) and Rio Grande do Norte (RN), northeast of Brazil, the most significant deposits of non-metallic industrial minerals are pegmatites, quartzites and granites, which are located in Seridó region. Extraction of clay, quartz, micas and feldspars occurs mainly in the cities of Várzea (PB), OuroBranco (RN) and Parelhas (RN). Mining companies working in the extraction and processing of quartzite generate large volumes of waste containing about 90% SiO2 in their chemical composition coming from quartz that is one of the basic constituents of ceramic mass for the production of ceramic coating. Therefore, this work evaluates the utilization of these wastes on fabrication of high-quality ceramic products, such as porcelain stoneware, in industrial scale. Characterization of raw materials was based on XRF, XRD, GA, TGA and DSC analysis, on samples composed by 57% of feldspar, 37% of argil and 6% of quartzite residues, with 5 different colors (white, gold, pink, green and black). Samples were synthesized in three temperatures, 1150°C, 1200°C and 1250°C, with one hour isotherm and warming-up tax of 10°C/min. After synthesizing, the specimens were submit to physical characterization tests of water absorption, linear shrinkage, apparently porosity, density, flexural strain at three points. The addition of 6% of quartzite residue to ceramic mass provided a final product with technological properties attending technical norms for the production of porcelain stoneware; best results were observed at a temperature of 1200°C. According to the results there was a high iron oxide on black quartzite, being their use in porcelain stoneware discarded by ethic and structural question, because the material fused at 1250°C. All quartzite formulations had low water absorption when synthesized at 1200°C, getting 0.1% to 0.36% without having gone through the atomization process. Besides, flexural strain tests overcame 27 MPa reaching the acceptance limits of the European Directive EN 100, at 1200°C synthesizing. Thus, the use of quartzite residues in ceramic masses poses as great potential for the production of porcelain stoneware.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The WTP produce many kinds of residue on your treatment stages, but the sludge is the more problematic from the final disposition point view. The actual rate of residue production deriving from technological evolution and the crescent population needs prevents the subtle equilibrium generation between consumption and recycling/reuse, creating problems of pollution resulting from inappropriate management of residues. Thus, is necessary achieve a new equilibrium between the grow from raw materials and energy and the residue generation. This equilibrium should be achieved by technical and economic feasibility of environmental supported models through recycling and reuse. The red ceramic industry stand out in residue absorption question as raw material due their clay mass heterogeneity, constituted by clay minerals and non-clay minerals with wide mineralogical variation, allowing residue inclusion which act like plastic or non-plastic materials, contributing to retain heavy metals contained in residues in the vitreous mass formed during the burning of the ceramic bodies. This work propose the study of the influence of incorporation of 25 wt.% sludge from wastewater treatment plant, according preliminary results, in the mass to produce ceramic bodies. The raw materials was characterized through chemical composition analyses by XRF, mineralogical analyses by XRD, thermal analyses by TG and DTA, Atterberg limits and thermodilatometry. Subsequently was composed the mass with 75 wt.% of clay and 25 wt.% of dried wastewater sludge from UFRN WWTP. Samples with 6,0 x 2,0 x 0,5 cm was produced with unidirectional compacting under pressure of 20MPa and burned in temperatures between 950 and 1,200ºC. After fired, the ceramic bodies have been submitted to physical and mechanical analyses through the measure of firing shrinkage, water absorption, density, apparent porosity and flexural strength; crystallographic analyses through XRD and microstructure analyses by SEM. The technological properties obtained was satisfactory to production of roof tiles with 25 wt.% at 1,200 ºC, but the production of others products at lower temperatures was not feasible

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Piauí state is a major producer of traditional red ceramic burning as bricks, tiles and ceramic tiles, with its main production center located in the city of Teresina. The state has large reserves of raw materials that can be used in the ceramic coating as clays, quartz, talc and carbonates. However, in the preparation of ceramic bodies using only a mixture of clays with different characteristics. The study aims to evaluate the effect of adding two types of carbonates in the ceramic semiporous mass coating produced in Piauí and then to verify the potential use of these carbonates as supplementary raw material product manufactured or the feasibility of obtaining a ceramic plate that meets the specifications for the porous coating. For this, were characterized the ceramic Piauí coating mass, a calcitic carbonate and a dolomitic, were made in the levels of 2, 4, 8, 16, and 32%. The masses were formed by pressing and burneds in two environments: a laboratory furnace (1080°C, 1120°C, 1140°C, and 1160°C) and an industrial furnace (1140°C). Then, following tests of linear shrinkage water absorption, apparent porosity, bulk density and flexural strength. Furthermore, the fired specimens were tested for their macrostructure and microstructure. The results showed the possibility of using the carbonate in ceramic mass flooring produced in Piauí, as added in small proportions improved dimensional stability and increased mechanical strength of ceramics pieces. It also proved itself possible to produce porous coating when added in higher levels

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The power industry generates as waste ceramic bodies of electrical fuses that are discarded after use. The formulation of ceramic bodies for porcelain electrical insulators using waste from the bodies fuse allocation promotes environmentally appropriate, through the reuse of the material. This work evaluated the technical feasibility of using waste for use in electrical porcelains with formulations containing the residue, feldspar and kaolinite. The raw materials were processed through grinding and sieving to 200 mesh. The ceramic material obtained from the proposed formulations with 25%, 30%, 34% and 40% of the residue went through a vibratory mill for grinding and homogenization, and then were sieved at 325 mesh. The samples were shaped in a uniaxial press, with the application of 25 MPa and sintered at 1100° C, 1150°C, 1200°C, 1225°C and 1250°C, at levels of 20 and 45 minutes. Were also developed bodies of evidence with reference formulations obtained without residue, to establish a comparison on physical, mechanical and electrical. The tests were conducted and technology: linear shrinkage, porosity, water absorption, resistance to bending to three points, measuring insulation resistance electrical resistivity of the material, X-ray diffraction and X-ray fluorescence Waste characterizations pointed to the existence of two phases: mullite and quartz phases are of great importance in the microstructure of the ceramic and this fact reveals a possibility for reuse in electrical porcelains. The mullite is an important constituent because it is a phase that makes it possible to increase the mechanical strength in addition to the body allows the use at high temperatures. The use of ceramic bodies residue fuses, proved feasible for application in electrical porcelain and the most significant results were obtained by the formulations with 25% waste and sintering at 1200°C