3 resultados para Herbaria
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Leguminosae is the third largest family of angiosperms with about 19.325 species and 727 genera, and it is pantropically distributed. Papilionoideae is the most diverse of the three legume subfamilies, with around 13.800 species (71%), 478 genera, and 28 tribes. Papilionoid legumes include herbs, shrubs, lianas or trees with pinnate, trifoliolate, unifoliolate or simple leaves, flowers frequently papilionate with descending imbricate petal aestivation, the petals highly differentiated into standard, keel, and wings, androecium usually diplostemous, and seeds without pleurogram, with conspicuous hilum, and the embryo radicle usually curved. The current study aims to carry out a taxonomic account of the Papilionoideae from Atlantic Forest remnants in Rio Grande do Norte, Brazil, across the herbaria data surveys, collections of field samples and morphological analysis of the collected specimens and/or herbaria materials. Identification key, descriptions, diagnostic characters, illustrations, and geographic distribution of the 68 species and 32 genera within the following tribes Phaseoleae (11 genera/24 species), Dalbergieae (9/20), Swartzieae (3/3), Millettieae (2/4), Sophoreae (2/2), Abreae (1/1), Crotalarieae (1/3), Desmodieae (1/7), Indigofereae (1/3), and Sesbanieae (1/1). The most species-rich genera were Desmodium Desv. (7 species), Centrosema (DC.) Benth. (5), Stylosanthes Sw. (5), Aeschynomene L. (4) and Macroptilium (Benth.) Urb. (4). Concerning to the habit, the herbaceous and shrubby has predominated with 60% (41 spp.), following by the vine and lianas with 28% (19 spp.) and the woody with only 12% (8 spp.). Thirty two species and the following genera are newly recorded for the flora of Rio Grande do Norte: Chaetocalyx, Cochliasanthus, Crotalaria, Galactia, Geoffroea, Macroptilium, Rhynchosia, Swartzia, Trischidium, and Vigna
Resumo:
Capparaceae comprises 25 genera and 480 species, of which 110 are included in 18 genera in Neotropics. Its distribution is pantropical with high frequency in seasonally dry environments. Its representatives are woody, shrubs and rarely wines, with simple leave or compound 3-foliolate, shorts and deciduous floral bracts, tetramerous and nocturnal flowers with exserts and numerous stamens, ovary supero on a gynophore and fleshy fruits, dehiscents or indehiscentes. For Brazil, 12 genera and 28 species are recorded and 12 of that are endemic to the country, occurring preferentially in vegetation of savanna estépica s.str., seasonal semideciduos forest and restinga. This work shows two chapters. In the first chapter, the distributions patterns of the species occurring in the brazilian semi-arid region and their distribution intra Caatinga are discussed. The distribution patterns were determined from a review of the distribution of species in herbaria collections and supplemented with data obtained from specific bibliography about the family. A map containing 1 × 1 grid cells was used to evaluate the richness, collection efforts and floristic similarity of the species intra Caatinga. Six genera and eight species were registered in Caatinga. Four species are endemic to Brazil, with only one endemic to Caatinga, and the other four are widespread in Neotropics. Four distribution patterns were observed: restricted to the NE, broad and continuous in Brazil, disjunct and neotropical. All the species were recorded in Bahia, state with the highest species richness per grid cell and also remarkable sampling efforts species of the family. The state of Piauí presents priority areas for further collection of Capparaceae, due to low family representation in the state. The floristic similarity analysis intra Caatinga was low, 22 %, probably due to a few species of the family in the region and the wide distribution of the same. The second chapter presents the Capparaceae of flora to Rio Grande do Norte (RN), since the state has a little-known flora, with specific studies. Through collections in the state and herbaria review, five genera and six species of Capparaceae were recorded in RN: Capparidastrum (1 spp.); Crateva (1 spp.); Cynophalla (2 spp.); Mesocapparis (1 spp.) and Neocalyptrocalyx (1 spp.). Capparidastrum frondosum and Mesocapparis lineata are new records for the state. An identification key, descriptions and images, comments on the biology of the species and protected areas where they occur are showed.
Resumo:
With the development and improvement of techniques for molecular studies and their subsequent application to the systematic, significant changes occurred in the classification of gasteroid fungi. The genus Morganella belongs to the family Lycoperdaceae, and is characterized mainly by lignicolous habit and presence of paracapilicium. Recent data demonstrate the discovery of new species for the group and the existence of a wide variety of species occurring in tropical ecosystems. However, the phylogenetic relationships of the genus, as well as the taxonomic classification, still require revisions to be better understood, the literature studies that address this issue are still very scarce. Thus, the objective of this study was to conduct studies of molecular phylogeny with species of the genus Morganella, to enhance understanding of the phylogeny of the group by including tropical species data. For this, the specimens used both for DNA extractions as for morphological review were obtained from Brazilian and foreign herbaria. For morphological analysis were observed characters relevant to the group's taxonomy. For phylogenetic analysis the Maximum Parsimony and Bayesian Analyzes were used, using the internal transcribed spacer (ITS) of nuclear ribosomal DNA. In phylogenetic analyzes, representatives from Morganella form a monophyletic clade with good support value and based on these results the genus should not be included as subgenus of Lycoperdon. The analysis indicated that M. pyriformis was not grouped with other representatives of Morganella, and therefore should not be included in the group as representative of Apioperdon subgenus because it is a Lycoperdon representative. Moreover, M. fuliginea, M. nuda, M. albostipitata, M. velutina, M. subincarnata are grouped with high support values within the genus Morganella. Morganella arenicola based on morphological and molecular studies does not aggregate in Morganella. Morganella nuda was grouped with M. fuliginea giving indications that can be treated as an intraspecific variation. The results of the analyzes favor to a better understanding of the species of Morganella. However, additional studies using a greater number of species, as well as other molecular markers are needed for a better understanding of the phylogenetic of Morganella.