6 resultados para Hepatic Enzymes

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Seeds from legumes including the Glycine max are known to be a rich source of protease inhibitors. The soybean Kunitz trypsin inhibitor (SKTI) has been well characterised and has been found to exhibit many biological activities. However its effects on inflammatory diseases have not been studied to date. In this study, SKTI was purified from a commercial soy fraction, enriched with this inhibitor, using anion exchange chromatography Resource Q column. The purified protein was able to inhibit human neutrophil elastase (HNE) and bovine trypsin. . Purified SKTI inhibited HNE with an IC50 value of 8 µg (0.3 nM). At this concentration SKTI showed neither cytotoxic nor haemolytic effects on human blood cell populations. SKTI showed no deleterious effects on organs, blood cells or the hepatic enzymes alanine amine transferase (ALT) and aspartate amino transferase (AST) in mice model of acute systemic toxicity. Human neutrophils incubated with SKTI released less HNE than control neutrophils when stimulated with PAF or fMLP (83.1% and 70% respectively). These results showed that SKTI affected both pathways of elastase release by PAF and fMLP stimuli, suggesting that SKTI is an antagonist of PAF/fMLP receptors. In an in vivo mouse model of acute lung injury, induced by LPS from E. coli, SKTI significantly suppressed the inflammatory effects caused by elastase in a dose dependent manner. Histological sections stained by hematoxylin/eosin confirmed this reduction in inflammation process. These results showed that SKTI could be used as a potential pharmacological agent for the therapy of many inflammatory diseases

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Seeds from legumes including the Glycine max are known to be a rich source of protease inhibitors. The soybean Kunitz trypsin inhibitor (SKTI) has been well characterised and has been found to exhibit many biological activities. However its effects on inflammatory diseases have not been studied to date. In this study, SKTI was purified from a commercial soy fraction, enriched with this inhibitor, using anion exchange chromatography Resource Q column. The purified protein was able to inhibit human neutrophil elastase (HNE) and bovine trypsin. . Purified SKTI inhibited HNE with an IC50 value of 8 µg (0.3 nM). At this concentration SKTI showed neither cytotoxic nor haemolytic effects on human blood cell populations. SKTI showed no deleterious effects on organs, blood cells or the hepatic enzymes alanine amine transferase (ALT) and aspartate amino transferase (AST) in mice model of acute systemic toxicity. Human neutrophils incubated with SKTI released less HNE than control neutrophils when stimulated with PAF or fMLP (83.1% and 70% respectively). These results showed that SKTI affected both pathways of elastase release by PAF and fMLP stimuli, suggesting that SKTI is an antagonist of PAF/fMLP receptors. In an in vivo mouse model of acute lung injury, induced by LPS from E. coli, SKTI significantly suppressed the inflammatory effects caused by elastase in a dose dependent manner. Histological sections stained by hematoxylin/eosin confirmed this reduction in inflammation process. These results showed that SKTI could be used as a potential pharmacological agent for the therapy of many inflammatory diseases

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SILVA, Fatima C. B. L. et al. Digestive enzymes during development of Ceratitis capitata (Diptera:Tephritidae) and effects of SBTI on its digestive serine proteinase targets. Insect Biochemistry and Molecular Biology, v. 36, p. 561-569, 2006.ISSN: 0965-1748.DOI: 10.1016/j.ibmb.2006.04.004.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, it has been a increasing interest in the antioxidative role of natural products to aid the endogenous protective biological systems against the deleterious effects of oxygen (ROS) and nitrogen (RNS) reactive species. Many antioxidant compounds, naturally occurring from plant sources. Natural antioxidants can protect and prevent the human body from oxidative stress and retard the progress of many diseases in which free radical are involved. Several plants used in the folk medicine to treat certain disorders that are accompanied by inflammation and other pharmacological properties have been proved their attributed properties, such antioxidant activity. Turnera ulmifolia Linn. var. elegans (Turneraceae), frequently employed by population as a medicinal plant, demonstrated antioxidant activity by in vitro and in vivo assays, using its leaf hydroethanolic extract (10%) he in vitro DPPH radical-scanvenging activity showed a strong antioxidant activity (86.57% ± 0.14), similar to Carduus marianus and catequine effects. For the in vivo assays, adult female Wistar rats (n=48) with carbon tetrachloride hepatic injury induced (2,5mL/kg i.p.) were used, Six groups or rats were uses (n=8) [G1 = control (1,25 mL/kg i.p. vehicle); G2 = CCl4 (2,5 mL/kg i.p.); G3 = CCl4 + extract 7 days (500 mg/kg p.o.); G4 = CCl4 + Legalon® 7 days (50 mg/kg p.o.), G5 = CCl4 + extract 21 days (500 mg/kg p.o.) e G6 = CCl4 + Legalon® 21 days (50 mg/kg p.o.)]. The hepatic oxidative injury was evaluated through biochemical parameters [alanine amino transferase (ALT), aspartate amino transferase (AST)] histopathological study, while thiobarbituric acid reactive products (TBAR), glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) levels were used to evaluate proantioxidant parameters. The plant extract tested was found effective as hepatoprotective as evidenced by a decreasing in the ALT and AST activities (p<0.001) and TBAR (plasma, p<0.001 and liver, p<0.001). Levels of GSH (blood, p<0.001 and liver, p<0.001) and antioxidant enzymes [CAT erythrocyte (p<0.05) and hepatic (p<0.01); SOD erythrocyte (p<0.001) and hepatic (p<0.001); GPx erythrocyte (p<0.001) and hepatic (p<0.001)] were also significantly increased. Histopathological changes induced by CCl4 were significantly reduced by the extract treatment. The data obtained were comparable to that of Legalon®, a reference hepatoprotective drug. The results showed that T. ulmifolia leaf extract protects against CCl4 induced oxidative damage. Therefore, this effect must be associated to its antioxidant activity, attributed to the phenolic compounds, present in these extract, which can act as free radical scavengers

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The correlation between the type 1 diabetes mellitus and oxidative stress have been described in several studies, however its underlying mechanisms are not fully elucidated. The present work aimed to evaluate the effects of four weeks of streptozootocin-induced (STZ) diabetes in the redox homeostasis of rat hepatocytes. Thus, the liver of male Wistar rats from control and diabetic groups were collected and the activity and expression of antioxidant enzymes, as well the main markers of oxidative stress and content of H2O2 in these tissues were measured. The diabetes induced the activity of superoxide dismutase (SOD) and the gene expression of its mitochondrial isoform, SOD2. However, the expression of SOD1, the cytoplasmic isoform, was reduced by this disease. The activity and expression of catalase (CAT), as well the expression of glutathione peroxidase 1 (GPX1) and peroxiredoxin 4 (PRX4) were drastically reduced in the hepatocytes of diabetics rats. Even with this debility in the peroxidases mRNA expression, the content of H2O2 was reduced in the liver of diabetics rats when compared to the control group. The diabetes caused an increase of lipid peroxidation and a decrease of protein thiol content, showing that this disease causes distinct oxidative effects in different cell biomolecules. Our results indicate that four week of diabetes induced by STZ is already enough to compromise the enzymatic antioxidant systems of the hepatocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SILVA, Fatima C. B. L. et al. Digestive enzymes during development of Ceratitis capitata (Diptera:Tephritidae) and effects of SBTI on its digestive serine proteinase targets. Insect Biochemistry and Molecular Biology, v. 36, p. 561-569, 2006.ISSN: 0965-1748.DOI: 10.1016/j.ibmb.2006.04.004.