11 resultados para Heparan sulfate

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The occurrence of bioactive compounds in marine organisms comes awaking the interest of the pharmaceutical industry. Heparin, a sulfated polysaccharide which presence was already identified in several marine invertebrates, is very attractive due its remarkable functional versatility. Besides to intervene in blood coagulation, this molecule has a great anti-inflammatory potential. However, its strong anticoagulant activity difficult the clinical exploitation of its anti-inflammatory properties. Thus, the aims of this work were to evaluate the effect of a heparin-like compound (heparinoid), isolated from the cephalotorax of the Litopenaeus vannamei shrimp, on the inflammatory response, hemostasia and synthesis of antithrombotic heparan sulfate by endothelial cells, besides studying some aspects concerning its structure. The purified heparinoid was structurally characterized following an analytical boarding, involving electrophoresis and chromatography. The structural analysis have shown that this compound possess a high content of glucuronic acid residues and disulfated disaccharide units. In contrast to mammalian heparin, the heparinoid was incapable to stimulate the synthesis of heparan sulfate by endothelial cells in the tested concentrations, beyond to show reduced anticoagulant activity and hemorrhagic effect. In a model of acute inflammation, the compound isolated from the shrimp reduced more than 50% of the cellular infiltration. Besides reduce the activity of MMP-9 and proMMP-2 of the peritoneal lavage of inflamed animals, the heparinoid also reduced the activity of MMP-9 secreted by activated human leukocytes. These results demonstrate the potential of heparinoid from L. vannamei to intervene in the inflammatory response. For possessing reduced anticoagulant activity and hemorrhagic effect, this compound can serve as a structural model to direct the development of more specific therapeutical agents to the treatment of inflammatory diseases

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A β-D-N-acetilglucosaminidase extracted and partially isolated from crustacean Artemia franciscana by ammonium sulfate precipitation and filtration gel chromatography Bio Gel A 1.5m. the enzyme was immobilized on ferromagnetic Dacron yielding a insoluble active derivative with 5.0 units/mg protein and 10.35% of the soluble enzyme activity. β-D-N-acetilglucosaminidase-ferromagnetic Dacron was easily removed from the reaction mixture by a magnetic field, it was reused for ten times without loss in its activity. The ferromagnetic Dacron was better activated at pH 5.0. The particles visualized at scanning electron microscope (SEM) had presented different sizes, varying between 721nm and 100µm. Infra red confirmed immobilization on support, as showed by primary amino peaks at 1640 and 1560 cm-1 . The immobilize enzyme presented Km of 2.32 ± 0.48 mM and optimum temperature of 50°C. Bought presented the same thermal stable of the soluble enzyme and larger enzymatic activity at pH 5.5. β-D-N-acetilglucosaminidase-Dacron ferromagnético showed sensible for some íons as the silver (AgNO3), with loss of activity. The β-D-N acetilglucosaminidase activity for mercury chloride (HgCl2), whom is one of the most toxic substance joined in nature, it was presented activity already diminished at 0,01mM and lost total activity at 4mM, indicating sensitivity for this type of metal. β-D-N-acetilglucosaminidase-ferromagnetic Dacron showed degradative capacity on heparan sulfate, the enzyme still demonstrated degradative capacity on heparan sulphate, suggesting a possible application to produce fractions of this glycosaminoglycan

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Heparan sulfate (HS) and Heparin (Hep) glycosaminoglycans (GAGs) are heterogeneous and highly charged polysaccharides. HS is structurally related to Hep but is much less substituted with sulfo groups than heparin and has a more varied structure (or sequence). Because of structural similiarities between these two polymers, they have been described together as heparinoids . Both chains bind a variety of proteins and mediate various physiologically important processes including, blood coagulation, cell adhesion and growth factor regulation. Heparinoids with structural characteristics similar to these described from HS and/or Hep from mammalian tissues have been isolated from different species of invertebrates, although only a few heparinoids from unusual sources have been characterized. The present study describes the presence of unusual heparinoids population from Artemia franciscana, isolated after proteolysis and fractionation by ion exchange resin and named, F-3.0M. The study model in vivo were hemostasis (rat tail scarification) and inflamatoty activity. The tests in vitro were used for coagulations assays (PT and APTT). The analyse of the heparinoids eluted with 3,0M NaCl showed electrophoretic migration in different buffer systems a single band with a behaviour intermediate between those of mammalian HEP and HS. The main products obtained from Artemia heparinoids after enzymatic degradation with heparitinases I and II from F. heparinum were N-sulphated disaccharides (∆U-GlcNS,6S/ ∆U,2S-GlcNS and ∆U-GlcNS) and N-acetylated disaccharides (∆U, GlcNAc). This heparinoid had a lower hemorrhagic effect (400μg/ml) when compared to unfractiionated heparins(25μg/ml).The results also suggest a negligible APTT activity of this heparinoid (62.2s). No action was observed on PT indicating that F-3.0M haven t action on the extrinsic pathway. The results showed that the fraction F- 3.0M have inhibitory effect on migration of leukocytes, 64.5% in the concentration of 10 μg/ml (P<0.001). The search for new heparin and/or heparan sulphates analogs devoid of anticoagulant activity is an atractive alternative and may open up a wide variety of new therapeutic applications

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Marine algae are one of the major sources of biologic compounds. In extracellular matrix of these organisms there are sulfated polysaccharides that functions as structural components and provides protection against dehydration. The fraction 1.0 (F1.0) rich in sulfated galactans obtained from red seaweed Hypnea musciformis was physicochemical characterized and evaluated for pharmacologic activity through antioxidant activity, cytotoxic action on erythrocytes, anticoagulant, stimulatory action under antithrombotic heparan sulfate synthesis and their effects on cell proliferation and cycle cell progression. The main components of F1.0 were carbohydrates (49.70 ± 0.10%) and sulfate (44.59 ± 0.015%), presenting phenolic compounds (4.79 ± 0.016%) and low protein contamination (0.92 ± 0.001%). Fraction 1.0 showed polidisperse profile and signs in infrared analysis in 1262, 1074 and 930, 900 and 850 attributed to sulfate esters S=O bond, presence of a 3,6- anidrogalactose C-O bond, non-sulfated β-D-galactose and a C-O-SO4 bond in galactose C4, respectively. The fraction rich in sulfated galactans exhibited strong antioxidant action under lipid peroxidation assay with IC50 of 0.003 mg/mL. Besides the inhibition of hemolysis induced by H2O2 in erythrocytes treated with F1.0, this fraction did not promote significant cytotoxity under erythrocytes membranes. F1.0 exhibited low anticoagulant activity causing moderate direct inhibition of enzimatic activity of thrombin. This fraction promoted stimulation around of 4.6 times on this synthesis of heparan sulfate (HS) by rabbit aortic endothelial cells (RAEC) in culture when was compared with non treated cells. The fraction of this algae displayed antiproliferative action under RAEC cells causing incresing on cell number on S fase, blocking the cycle cell progression. Thus F1.0 presented cytostatic and no cytotoxic action under this cell lineage. These results suggest that F1.0 from H. musciformis have antioxidant potential which is a great effect for a compound used as food and in food industry which could be an alternative to food industry to prevent quality decay of lipid containing food due to lipid peroxidation. These polysaccharides prevent the lipid peroxidation once the fraction in study exhibited strong inhibitory action of this process. Furthermore that F1.0 present strong antithrombotic action promoting the stimulation of antithrombotic HS synthesis by endothelial cells, being important for thrombosis preventing, by its inhibitory action under reactive oxygen species (ROS) in some in vitro methods, being involved in promotion of hypercoagulability state.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Seaweeds are a major source of biologically active compounds . In the extracellular matrix of these organisms are sulfated polysaccharides that functions as structural components preventing it against dehydration. The fraction 0.9 (FucB) rich in sulfated fucans obtained from brown seaweed Dictyota menstrualis was chemical characterized and evaluated for pharmacological activity by testing anticoagulant activity, stimulatory action on the synthesis of an antithrombotic heparan sulfate, antioxidant activity and its effects in cell proliferation. The main components were FucB carbohydrates (49.80 ± 0.10 %) and sulfate (42.30 ± 0.015 %), with phenolic compounds ( 3.86 ± 0.016 %) and low protein contamination ( 0.58 ± 0.001 % ) . FucB showed polydisperse profile and analysis of signals in the infrared at 1262, 1074 and 930 cm -1 and 840 assigned to S = O bonds sulfate esters , CO bond presence of 3,6- anhydrogalactose , β -D- galactose non- sulfated sulfate and the axial position of fucose C4 , respectively. FucB exhibited moderate anticoagulant activity , the polysaccharides prolonged time (aPTT ) 200 ug ( > 90s ) partial thromboplastin FucB no effect on prothrombin time (PT), which corresponds to the extrinsic pathway of coagulation was observed. This stimulation promoted fraction of about 3.6 times the synthesis of heparan sulfate (HS) by endothelial cells of the rabbit aorta ( RAEC ) in culture compared with cells not treated with FucB . This has also been shown to compete for the binding site with heparin. The rich fraction sulfated fucans exhibited strong antioxidant activity assays on total antioxidant (109.7 and 89.5 % compared with BHT and ascorbic acid standards ) , reducing power ( 71 % compared to ascorbic acid ) and ferric chelation ( 71 , comparing with 5 % ascorbic acid). The fraction of algae showed cytostatic activity on the RAEC cells revealed that the increase of the synthesis of heparan sulfate is not related to proliferation. FucB showed antiproliferative action on cell lines modified as Hela and Hep G2 by MTT assay . These results suggest that FucB Dictyota menstrualis have anticoagulant , antithrombotic , antioxidant potential as well as a possible antitumor action, promoting the stimulation of the synthesis of antithrombotic HS by endothelial cells and is useful in the prevention of thrombosis, also due to its inhibitory action on species reactive oxygen ( ROS ) in some in vitro systems , being involved in promoting a hypercoagulable state

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fucan is a term used to denominate a family of sulfated L-fucose-rich polysaccharides. The brown alga Spatoglossum schröederi (Dictyotaceae) has three heterofucans namely fucan A, B and C. The 21 kDa fucan A is composed of a core of β (1-3) glucuronic acid-containing oligosaccharide of 4.5 kDa with branches at C4 of fucose chains α (1-3) linked. The fucose is mostly substituted at C4 with a sulfate group and at C2 with chains of β (1-4) xylose. This fucan has neither anticoagulant (from from 0.1 to 100µg) nor hemorrhagic activities (from 50 to 800 µg/mL). The antithrombotic test in vivo showed the fucan A has no activity in any of the concentrations (from 0.2 to 20µg/g/day) tested 1h after polysaccharide administration. However, when fucan A was injected endovenously 24h before the ligature of the venae cavae, we observed a dose-dependent effect, reaching saturation at around 20g/g of rat weight. In addition, this effect is also time-dependent, reaching saturation around 16h after fucan administration. In addition, regardless of administration pathway, fucan A displayed antithrombotic action. The exception was the oral pathway. Of particular importance was the finding that fucan A stimulates the synthesis of an antithrombotic heparan sulfate from endothelial cells like heparin. The hypothesis has been raised that in vivo antithrombotic activity of fucan A is related to the increased production this heparan. Taken together with the fact that the compound is practically devoid of anticoagulant and hemorrhagic activity suggests that it may be an ideal antithrombotic agent in vivo

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The occurrence of bioactive compounds in marine organisms comes awaking the interest of the pharmaceutical industry. Heparin, a sulfated polysaccharide which presence was already identified in several marine invertebrates, is very attractive due its remarkable functional versatility. Besides to intervene in blood coagulation, this molecule has a great anti-inflammatory potential. However, its strong anticoagulant activity difficult the clinical exploitation of its anti-inflammatory properties. Thus, the aims of this work were to evaluate the effect of a heparin-like compound (heparinoid), isolated from the cephalotorax of the Litopenaeus vannamei shrimp, on the inflammatory response, hemostasia and synthesis of antithrombotic heparan sulfate by endothelial cells, besides studying some aspects concerning its structure. The purified heparinoid was structurally characterized following an analytical boarding, involving electrophoresis and chromatography. The structural analysis have shown that this compound possess a high content of glucuronic acid residues and disulfated disaccharide units. In contrast to mammalian heparin, the heparinoid was incapable to stimulate the synthesis of heparan sulfate by endothelial cells in the tested concentrations, beyond to show reduced anticoagulant activity and hemorrhagic effect. In a model of acute inflammation, the compound isolated from the shrimp reduced more than 50% of the cellular infiltration. Besides reduce the activity of MMP-9 and proMMP-2 of the peritoneal lavage of inflamed animals, the heparinoid also reduced the activity of MMP-9 secreted by activated human leukocytes. These results demonstrate the potential of heparinoid from L. vannamei to intervene in the inflammatory response. For possessing reduced anticoagulant activity and hemorrhagic effect, this compound can serve as a structural model to direct the development of more specific therapeutical agents to the treatment of inflammatory diseases

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A β-D-N-acetilglucosaminidase extracted and partially isolated from crustacean Artemia franciscana by ammonium sulfate precipitation and filtration gel chromatography Bio Gel A 1.5m. the enzyme was immobilized on ferromagnetic Dacron yielding a insoluble active derivative with 5.0 units/mg protein and 10.35% of the soluble enzyme activity. β-D-N-acetilglucosaminidase-ferromagnetic Dacron was easily removed from the reaction mixture by a magnetic field, it was reused for ten times without loss in its activity. The ferromagnetic Dacron was better activated at pH 5.0. The particles visualized at scanning electron microscope (SEM) had presented different sizes, varying between 721nm and 100µm. Infra red confirmed immobilization on support, as showed by primary amino peaks at 1640 and 1560 cm-1 . The immobilize enzyme presented Km of 2.32 ± 0.48 mM and optimum temperature of 50°C. Bought presented the same thermal stable of the soluble enzyme and larger enzymatic activity at pH 5.5. β-D-N-acetilglucosaminidase-Dacron ferromagnético showed sensible for some íons as the silver (AgNO3), with loss of activity. The β-D-N acetilglucosaminidase activity for mercury chloride (HgCl2), whom is one of the most toxic substance joined in nature, it was presented activity already diminished at 0,01mM and lost total activity at 4mM, indicating sensitivity for this type of metal. β-D-N-acetilglucosaminidase-ferromagnetic Dacron showed degradative capacity on heparan sulfate, the enzyme still demonstrated degradative capacity on heparan sulphate, suggesting a possible application to produce fractions of this glycosaminoglycan

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Heparan sulfate (HS) and Heparin (Hep) glycosaminoglycans (GAGs) are heterogeneous and highly charged polysaccharides. HS is structurally related to Hep but is much less substituted with sulfo groups than heparin and has a more varied structure (or sequence). Because of structural similiarities between these two polymers, they have been described together as heparinoids . Both chains bind a variety of proteins and mediate various physiologically important processes including, blood coagulation, cell adhesion and growth factor regulation. Heparinoids with structural characteristics similar to these described from HS and/or Hep from mammalian tissues have been isolated from different species of invertebrates, although only a few heparinoids from unusual sources have been characterized. The present study describes the presence of unusual heparinoids population from Artemia franciscana, isolated after proteolysis and fractionation by ion exchange resin and named, F-3.0M. The study model in vivo were hemostasis (rat tail scarification) and inflamatoty activity. The tests in vitro were used for coagulations assays (PT and APTT). The analyse of the heparinoids eluted with 3,0M NaCl showed electrophoretic migration in different buffer systems a single band with a behaviour intermediate between those of mammalian HEP and HS. The main products obtained from Artemia heparinoids after enzymatic degradation with heparitinases I and II from F. heparinum were N-sulphated disaccharides (∆U-GlcNS,6S/ ∆U,2S-GlcNS and ∆U-GlcNS) and N-acetylated disaccharides (∆U, GlcNAc). This heparinoid had a lower hemorrhagic effect (400μg/ml) when compared to unfractiionated heparins(25μg/ml).The results also suggest a negligible APTT activity of this heparinoid (62.2s). No action was observed on PT indicating that F-3.0M haven t action on the extrinsic pathway. The results showed that the fraction F- 3.0M have inhibitory effect on migration of leukocytes, 64.5% in the concentration of 10 μg/ml (P<0.001). The search for new heparin and/or heparan sulphates analogs devoid of anticoagulant activity is an atractive alternative and may open up a wide variety of new therapeutic applications

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Marine algae are one of the major sources of biologic compounds. In extracellular matrix of these organisms there are sulfated polysaccharides that functions as structural components and provides protection against dehydration. The fraction 1.0 (F1.0) rich in sulfated galactans obtained from red seaweed Hypnea musciformis was physicochemical characterized and evaluated for pharmacologic activity through antioxidant activity, cytotoxic action on erythrocytes, anticoagulant, stimulatory action under antithrombotic heparan sulfate synthesis and their effects on cell proliferation and cycle cell progression. The main components of F1.0 were carbohydrates (49.70 ± 0.10%) and sulfate (44.59 ± 0.015%), presenting phenolic compounds (4.79 ± 0.016%) and low protein contamination (0.92 ± 0.001%). Fraction 1.0 showed polidisperse profile and signs in infrared analysis in 1262, 1074 and 930, 900 and 850 attributed to sulfate esters S=O bond, presence of a 3,6- anidrogalactose C-O bond, non-sulfated β-D-galactose and a C-O-SO4 bond in galactose C4, respectively. The fraction rich in sulfated galactans exhibited strong antioxidant action under lipid peroxidation assay with IC50 of 0.003 mg/mL. Besides the inhibition of hemolysis induced by H2O2 in erythrocytes treated with F1.0, this fraction did not promote significant cytotoxity under erythrocytes membranes. F1.0 exhibited low anticoagulant activity causing moderate direct inhibition of enzimatic activity of thrombin. This fraction promoted stimulation around of 4.6 times on this synthesis of heparan sulfate (HS) by rabbit aortic endothelial cells (RAEC) in culture when was compared with non treated cells. The fraction of this algae displayed antiproliferative action under RAEC cells causing incresing on cell number on S fase, blocking the cycle cell progression. Thus F1.0 presented cytostatic and no cytotoxic action under this cell lineage. These results suggest that F1.0 from H. musciformis have antioxidant potential which is a great effect for a compound used as food and in food industry which could be an alternative to food industry to prevent quality decay of lipid containing food due to lipid peroxidation. These polysaccharides prevent the lipid peroxidation once the fraction in study exhibited strong inhibitory action of this process. Furthermore that F1.0 present strong antithrombotic action promoting the stimulation of antithrombotic HS synthesis by endothelial cells, being important for thrombosis preventing, by its inhibitory action under reactive oxygen species (ROS) in some in vitro methods, being involved in promotion of hypercoagulability state.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Seaweeds are a major source of biologically active compounds . In the extracellular matrix of these organisms are sulfated polysaccharides that functions as structural components preventing it against dehydration. The fraction 0.9 (FucB) rich in sulfated fucans obtained from brown seaweed Dictyota menstrualis was chemical characterized and evaluated for pharmacological activity by testing anticoagulant activity, stimulatory action on the synthesis of an antithrombotic heparan sulfate, antioxidant activity and its effects in cell proliferation. The main components were FucB carbohydrates (49.80 ± 0.10 %) and sulfate (42.30 ± 0.015 %), with phenolic compounds ( 3.86 ± 0.016 %) and low protein contamination ( 0.58 ± 0.001 % ) . FucB showed polydisperse profile and analysis of signals in the infrared at 1262, 1074 and 930 cm -1 and 840 assigned to S = O bonds sulfate esters , CO bond presence of 3,6- anhydrogalactose , β -D- galactose non- sulfated sulfate and the axial position of fucose C4 , respectively. FucB exhibited moderate anticoagulant activity , the polysaccharides prolonged time (aPTT ) 200 ug ( > 90s ) partial thromboplastin FucB no effect on prothrombin time (PT), which corresponds to the extrinsic pathway of coagulation was observed. This stimulation promoted fraction of about 3.6 times the synthesis of heparan sulfate (HS) by endothelial cells of the rabbit aorta ( RAEC ) in culture compared with cells not treated with FucB . This has also been shown to compete for the binding site with heparin. The rich fraction sulfated fucans exhibited strong antioxidant activity assays on total antioxidant (109.7 and 89.5 % compared with BHT and ascorbic acid standards ) , reducing power ( 71 % compared to ascorbic acid ) and ferric chelation ( 71 , comparing with 5 % ascorbic acid). The fraction of algae showed cytostatic activity on the RAEC cells revealed that the increase of the synthesis of heparan sulfate is not related to proliferation. FucB showed antiproliferative action on cell lines modified as Hela and Hep G2 by MTT assay . These results suggest that FucB Dictyota menstrualis have anticoagulant , antithrombotic , antioxidant potential as well as a possible antitumor action, promoting the stimulation of the synthesis of antithrombotic HS by endothelial cells and is useful in the prevention of thrombosis, also due to its inhibitory action on species reactive oxygen ( ROS ) in some in vitro systems , being involved in promoting a hypercoagulable state