53 resultados para Heavy oil

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Primary cementing is one of the main operations in well drilling responsible for the mechanical stability and zonal isolation during the production of oil. However, the cement sheath is constantly under mechanical stresses and temperature variations caused by the recovery of heavy oil. In order to minimize fracture and wear of the cement sheath, new admixtures are developed to improve the properties of Portland cement slurries and avoid environmental contamination caused by leaking gas and oil. Polymers with the ability to form polymeric films are candidates to improve the properties of hardened cement slurries, especially their fracture energy. The present study aimed at evaluating the effect of the addition of a chitosan suspension on cement slurries in order to improve the properties of the cement and increase its performance on heavy oil recovery. Chitosan was dissolved in acetic ac id (0.25 M and 2 M) and added to the formulation of the slurries in different concentrations. SEM analyses confirmed the formation of polymeric films in the cementitious matrix. Strength tests showed higher fracture energy compared to slurries without the addition of chitosan. The formation of the polymeric films also reduced the permeability of the slurry. Therefore, chitosan suspensions can be potentially used as cementing admixtures for heavy oil well applications

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development of activities in the oil and gas sector has been promoting the search for materials more adequate to oilwell cementing operation. In the state of Rio Grande do Norte, the cement sheath integrity tend to fail during steam injection operation which is necessary to increase oil recovery in reservoir with heavy oil. Geopolymer is a material that can be used as alternative cement. It has been used in manufacturing of fireproof compounds, construction of structures and for controlling of toxic or radioactive waste. Latex is widely used in Portland cement slurries and its characteristic is the increase of compressive strength of cement slurries. Sodium Tetraborate is used in dental cement as a retarder. The addition of this additive aim to improve the geopolymeric slurries properties for oilwell cementing operation. The slurries studied are constituted of metakaolinite, potassium silicate, potassium hydroxide, non-ionic latex and sodium tetraborate. The properties evaluated were: viscosity, compressive strength, thickening time, density, fluid loss control, at ambient temperature (27 ºC) and at cement specification temperature. The tests were carried out in accordance to the practical recommendations of the norm API RP 10B. The slurries with sodium tetraborate did not change either their rheological properties or their mechanical properties or their density in relation the slurry with no additive. The increase of the concentration of sodium tetraborate increased the water loss at both temperatures studied. The best result obtained with the addition of sodium tetraborate was thickening time, which was tripled. The addition of latex in the slurries studied diminished their rheological properties and their density, however, at ambient temperature, it increased their compressive strength and it functioned as an accelerator. The increase of latex concentration increased the presence of water and then diminished the density of the slurries and increased the water loss. From the results obtained, it was concluded that sodium tetraborate and non-ionic latex are promising additives for geopolymer slurries to be used in oilwell cementing operation

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Steam injection is the most used method of additional recovery for the extraction of heavy oil. In this type procedure is common to happen gravitational segregation and this phenomenon can affect the production of oil and therefore, it shoulds be considered in the projects of continuous steam injection. For many years, the gravitational segregation was not adequately considered in the calculation procedures in Reservoir Engineering. The effect of the gravity causes the segregation of fluids inside the porous media according to their densities. The results of simulation arising from reservoirs could provide the ability to deal with the gravity, and it became apparent that the effects of the gravity could significantly affect the performance of the reservoir. It know that the gravitational segregation can happen in almost every case where there is injection of light fluid, specially the steam, and occurs with greater intensity for viscous oil reservoirs. This work discusses the influence of some parameters of the rock-reservoir in segregation as viscosity, permeability, thickness, cover gas, porosity. From a model that shows the phenomenon with greater intensity, optimized some operational parameters as the rate flow rate steam, distance between the wells injector-producer, and interval of completion which contributed to the reduction in gravity override, thus increasing the oil recovery. It was shown a greater technical-economic viability for the model of distance between the wells 100 m. The analysis was performed using the simulator of CMG (Computer Modeling Group-Stars 2007.11, in which was observed by iterating between studied variables in heavy oil reservoirs with similar characteristics to Brazilian Northeast

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Currently a resource more and more used by the petroleum industry to increase the efficiency of steam flood mechanism is the addition of solvents. The process can be understood as a combination of a thermal method (steam injection) with a miscible method (solvent injection), promoting, thus, the reduction of interfacial tensions and oil viscosity. The use of solvent alone tends to be limited because of its high cost. When co-injected with steam, the vaporized solvent condenses in the cooler regions of the reservoir and mixes with the oil, creating a zone of low viscosity between the steam and the heavy oil. The mobility of the displaced fluid is then improved, resulting in an increase of oil recovery. To better understand this improved oil recovery method, a numerical study of the process was done contemplating the effects of some operational parameters (distance between wells, injection steam rate, kind of solvent and injected solvent volume)on the accumulated production of oil, recovery factor and oil-steam rate. Semisynthetic models were used in this study but reservoir data can be extrapolated for practical applications situations on Potiguar Basin. Simulations were performed in STARS (CMG, 2007.11). It was found that injected solvent volumes increased oil recovery and oil rates. Further the majority of the injected solvent was produced and can be recycled

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exploration of heavy oil reservoirs is increasing every year in worldwide, because the discovery of light oil reservoirs is becoming increasingly rare. This fact has stimulated the research with the purpose of becoming viable, technically and economically, the exploration of such oil reserves. In Brazil, in special in the Northeast region, there is a large amount of heavy oil reservoir, where the recovery by the so called secondary methods Water injection or gas injection is inefficient or even impracticable in some reservoirs with high viscosity oils (heavy oils). In this scenario, steam injection appears as an interesting alternative for recover of these kinds of oil reservoirs. Its main mechanism consists of oil viscosity reduction through steam injection, increasing reservoir temperature. This work presents a parametric simulation study of some operational and reservoir variables that had influence on oil recovery in thin reservoirs typically found in Brazilian Northeast Basins, that use the steam injection as improved oil recovery method. To carry out simulations, it was used the commercial software STARS (Steam, Thermal, and Advanced Processes Reservoir Simulator) from CMG (Computer Modeling Group) version 2007.11. Reservoirs variables studied were horizontal permeability, vertical and horizontal permeability ratio, water zone and pay zone thickness ratio, pay zone thickness and thermal conductivity of the rock. Whereas, operational parameters studied were distance between wells and steam injection rate. Results showed that reservoir variables that had more influence on oil recovery were horizontal permeability and water zone and pay zone thickness ratio. In relation to operational variables, results showed that short distances between wells and low steam injection rates improved oil recovery

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Currently, due to part of world is focalized to petroleum, many researches with this theme have been advanced to make possible the production into reservoirs which were classified as unviable. Because of geological and operational challenges presented to oil recovery, more and more efficient methods which are economically successful have been searched. In this background, steam flood is in evidence mainly when it is combined with other procedures to purpose low costs and high recovery factors. This work utilized nitrogen as an alternative fluid after steam flood to adjust the best combination of alternation between these fluids in terms of time and rate injection. To describe the simplified economic profile, many analysis based on liquid cumulative production were performed. The completion interval and injection fluid rates were fixed and the oil viscosity was ranged at 300 cP, 1.000 cP and 3.000 cP. The results defined, for each viscosity, one specific model indicating the best period to stop the introduction of steam and insertion of nitrogen, when the first injected fluid reached its economic limit. Simulations in physics model defined from one-eighth nine-spot inverted were realized using the commercial simulator Steam, Thermal and Advanced Processes Reservoir Simulator STARS of Computer Modelling Group CMG

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Due to reservoirs complexity and significantly large reserves, heavy oil recovery has become one of the major oil industry challenges. Thus, thermal methods have been widely used as a strategic method to improve heavy oil recovery. These methods improve oil displacement through viscosity reduction, enabling oil production in fields which are not considered commercial by conventional recovery methods. Among the thermal processes, steam flooding is the most used today. One consequence in this process is gravity segregation, given by difference between reservoir and injected fluids density. This phenomenon may be influenced by the presence of reservoir heterogeneities. Since most of the studies are carried out in homogeneous reservoirs, more detailed studies of heterogeneities effects in the reservoirs during steam flooding are necessary, since most oil reservoirs are heterogeneous. This paper presents a study of reservoir heterogeneities and their influence in gravity segregation during steam flooding process. In this study some heterogeneous reservoirs with physical characteristics similar those found in the Brazilian Northeast Basin were analyzed. To carry out the simulations, it was used the commercial simulator STARS by CMG (Computer Modeling Group) - version 2007.11. Heterogeneities were modeled with lower permeability layers. Results showed that the presence of low permeability barriers can improve the oil recovery, and reduce the effects of gravity segregation, depending on the location of heterogeneities. The presence of these barriers have also increased the recovered fraction even with the reduction of injected steam rate

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrical resistive heating (ERH) is a thermal method used to improve oil recovery. It can increase oil rate and oil recovery due to temperature increase caused by electrical current passage through oil zone. ERH has some advantage compared with well-known thermal methods such as continuous steam flood, presenting low-water production. This method can be applied to reservoirs with different characteristics and initial reservoir conditions. Commercial software was used to test several cases using a semi-synthetic homogeneous reservoir with some characteristics as found in northeast Brazilian basins. It was realized a sensitivity analysis of some reservoir parameters, such as: oil zone, aquifer presence, gas cap presence and oil saturation on oil recovery and energy consumption. Then it was tested several cases studying the electrical variables considered more important in the process, such as: voltage, electrical configurations and electrodes positions. Energy optimization by electrodes voltage levels changes and electrical settings modify the intensity and the electrical current distribution in oil zone and, consequently, their influences in reservoir temperature reached at some regions. Results show which reservoir parameters were significant in order to improve oil recovery and energy requirement in for each reservoir. Most significant parameters on oil recovery and electrical energy delivered were oil thickness, presence of aquifer, presence of gas cap, voltage, electrical configuration and electrodes positions. Factors such as: connate water, water salinity and relative permeability to water at irreducible oil saturation had low influence on oil recovery but had some influence in energy requirements. It was possible to optimize energy consumption and oil recovery by electrical variables. Energy requirements can decrease by changing electrodes voltages during the process. This application can be extended to heavy oil reservoirs of high depth, such as offshore fields, where nowadays it is not applicable any conventional thermal process such as steam flooding

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Continuous steam injection is one of heavy oil thermal recovery methods used in the Brazilian Northeast because of high occurrence of heavy oil reservoir. In this process, the oil into the reservoir is heated while reduces, substantially, its viscosity and improves the production. This work analyzed how the shaly sand layers influenced in the recovery. The studied models were synthetics, but the used reservoir data can be extrapolated to real situations of Potiguar Basin. The modeling was executed using the STARS - Steam Thermal and Advanced Process Reservoir Simulator - whose version was 2007.10. STARS is a tool of CMG Computer Modeling Group. The study was conducted in two stages, the first we analyzed the influence of reservoir parameters in the thermal process, so some of these were studied, including: horizontal permeability of the reservoir and the layer of shaly sand, ratio of horizontal permeability to vertical permeability, the influence of capillary pressure layer of shaly sand and as the location and dimensions of this heterogeneity can affect the productivity of oil. Among the parameters studied the horizontal permeability of the reservoir showed the most significant influence on the process followed by diversity. In the second stage three models were selected and studied some operational parameters such as injection rate, distance between wells, production time and completion intervals. Among the operating parameters studied the low rate and intermediate distances between wells showed the best recoveries

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The production of heavy oil fields, typical in the Northeastern region, is commonly stimulated by steam injection. High bottom hole temperatures are responsible not only for the development of deleterious stresses of the cement sheath but also for cement strength retrogression. To overcome this unfavorable scenario, polymeric admixtures can be added to cement slurries to improve its fracture energy and silica flour to prevent strength retrogression. Therefore, the objective of the present study was to investigate the effect of the addition of different concentrations of polyurethane (5-25%) to cement slurries containing 40% BWOC silica flour. The resulting slurries were characterized using standard API (American Petroleum Institute) laboratory tests. In addition to them, the mechanical properties of the slurries, including elastic modulus and microhardness were also evaluated. The results revealed that density, free water and stability of the composite cement/silica/polyurethane slurries were within acceptable limits. The rheological behavior of the slurries, including plastic viscosity, yield strength and gel strength increased with the addition of 10% BWOC polyurethane. The presence of polyurethane reduced the fluid loss of the slurries as well as their elastic modulus. Composite slurries also depicted longer setting times due to the presence of the polymer. As expected, both the mechanical strength and microhardness of the slurries decreased with the addition of polyurethane. However, at high bottom hole temperatures, the strength of the slurries containing silica and polyurethane was far superior than that of plain cement slurries. In summary, the use of polyurethane combined with silica is an interesting solution to better adequate the mechanical behavior of cement slurries to heavy oil fields subjected to steam injection

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The application of thermal methods, to increase the recovery of heavy oil in mature fields through drainage with multilateral and horizontal wells, has been thoroughly studied, theorically, experimentally, testing new tools and methods. The continuous injection of steam, through a steam injector well and a horizontal producer well in order to improve horizontal sweep of the fluid reservoir, it is an efficient method. Starting from an heterogeneous model, geologically characterized, modeling geostatistics, set history and identification of the best path of permeability, with seismic 3D, has been dubbed a studying model. It was studied horizontal wells in various directions in relation to the steam and the channel of higher permeability, in eight different depths. Into in the same area were studied, the sensitivity of the trajectories of horizontal wells, according to the depth of navigation. With the purpose of obtaining the highest output of oil to a particular flow, quality, temperature and time for the injection of steam. The wells studied showed a significant improvement in the cumulative oil recovery in one of the paths by promoting an alternative to application in mature fields or under development fields with heavy oil

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In Brazilian Northeast there are reservoirs with heavy oil, which use steam flooding as a recovery method. This process allows to reduce oil viscosity, increasing its mobility and consequently its oil recovery. Steam injection is a thermal method and can occurs in continues or cyclic form. Cyclic steam stimulation (CSS) can be repeated several times. Each cycle consisting of three stages: steam injection, soaking time and production phase. CSS becomes less efficient with an increase of number of cycles. Thus, this work aims to study the influence of compositional models in cyclic steam injection and the effects of some parameters, such like: flow injection, steam quality and temperature of steam injected, analyzing the influence of pseudocomponents numbers on oil rate, cumulative oil, oil recovery and simulation time. In the situations analyzed was compared the model of fluid of three phases and three components known as Blackoil . Simulations were done using commercial software (CMG), it was analyzed a homogeneous reservoir with characteristics similar to those found in Brazilian Northeast. It was observed that an increase of components number, increase the time spent in simulation. As for analyzed parameters, it appears that the steam rate, and steam quality has influence on cumulative oil and oil recovery. The number of components did not a lot influenced on oil recovery, however it has influenced on gas production

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The world has many types of oil that have a range of values of density and viscosity, these are characteristics to identify whether an oil is light, heavy or even ultraheavy. The occurrence of heavy oil has increased significantly and pointing to a need for greater investment in the exploitation of deposits and therefore new methods to recover that oil. There are economic forecasts that by 2025, the heavy oil will be the main source of fossil energy in the world. One such method is the use of solvent vaporized VAPEX which is known as a recovery method which consists of two horizontal wells parallel to each other, with a gun and another producer, which uses as an injection solvent that is vaporized in order to reduce the viscosity of oil or bitumen, facilitating the flow to the producing well. This method was proposed by Dr. Roger Butler, in 1991. The importance of this study is to analyze how the influence some operational reservoir and parameters are important in the process VAPEX, such as accumulation of oil produced in the recovery factor in flow injection and production rate. Parameters such as flow injection, spacing between wells, type of solvent to be injected, vertical permeability and oil viscosity were addressed in this study. The results showed that the oil viscosity is the parameter that showed statistically significant influence, then the choice of Heptane solvent to be injected showed a greater recovery of oil compared to other solvents chosen, considering the spacing between the wells was shown that for a greater distance between the wells to produce more oil

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The method "toe-to-heel air injection" (THAITM) is a process of enhanced oil recovery, which is the integration of in-situ combustion with technological advances in drilling horizontal wells. This method uses horizontal wells as producers of oil, keeping vertical injection wells to inject air. This process has not yet been applied in Brazil, making it necessary, evaluation of these new technologies applied to local realities, therefore, this study aimed to perform a parametric study of the combustion process with in-situ oil production in horizontal wells, using a semi synthetic reservoir, with characteristics of the Brazilian Northeast basin. The simulations were performed in a commercial software "STARS" (Steam, Thermal, and Advanced Processes Reservoir Simulator), from CMG (Computer Modelling Group). The following operating parameters were analyzed: air rate, configuration of producer wells and oxygen concentration. A sensitivity study on cumulative oil (Np) was performed with the technique of experimental design, with a mixed model of two and three levels (32x22), a total of 36 runs. Also, it was done a technical economic estimative for each model of fluid. The results showed that injection rate was the most influence parameter on oil recovery, for both studied models, well arrangement depends on fluid model, and oxygen concentration favors recovery oil. The process can be profitable depends on air rate

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of the thermal recovery is to heat the resevoir and the oil in it to increase its recovery. In the Potiguar river basin there are located several heavy oil reservoirs whose primary recovery energy provides us with a little oil flow, which makes these reservoirs great candidates for application of a method of recovery advanced of the oil, especially the thermal. The steam injection can occur on a cyclical or continuous manner. The continuous steam injection occurs through injection wells, which in its vicinity form a zone of steam that expands itself, having as a consequence the displace of the oil with viscosity and mobility improved towards the producing wells. Another possible mechanism of displacement of oil in reservoirs subjected to continuous injection of steam is the distillation of oil by steam, which at high temperatures; their lighter fractions can be vaporized by changing the composition of the oil produced, of the oil residual or to shatter in the amount of oil produced. In this context, this paper aims to study the influence of compositional models in the continuous injection of steam through in the analysis of some parameters such as flow injection steam and temperature of injection. Were made various leading comparative analysis taking the various models of fluid, varying from a good elementary, with 03 pseudocomponents to a modeling of fluids with increasing numbers of pseudocomponents. A commercial numerical simulator was used for the study from a homogeneous reservoir model with similar features to those found in northeastern Brazil. Some conclusions as the increasing of the simulation time with increasing number of pseudocomponents, the significant influence of flow injection on cumulative production of oil and little influence of the number of pseudocomponents in the flows and cumulative production of oil were found