33 resultados para Heat Solar Energy

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It s presented a solar collector to be used in a system for heating bath water, whose main characteristic is its low cost. The collector consists of five plates of PVC with 10 mm thick, 200 mm in width and 1400mm in length, with an area equal to 1.4 square meters. The plates were connected in parallel to the ends of PVC tubes of  40 mm and 32 mm. The plates were coated on one side with aluminum sheets of soft drinks and beers cans open. The system worked on a thermosiphon and was tested in two configurations: the plates uncoated and coated with aluminum material, to determine the influence of material on the efficiency of the collector. For both configurations was used EPS plates below the surface to minimize heat losses from the botton. The thermal reservoir of the heating system is, also, alternative and low cost, since it was constructed from a polyethylene tank for storing water, with volume of 150 end 200 liters. It will be presented the thermal efficiency, heat loss, water temperature of the thermal reservoir at the end of the process and simulation of baths for a house with four residents. The will be demonstrated thermal, economic and material viability of the proposed collector, whose main innovation is the use of recyclables materials, cans of beer and soft drinks, to increase the temperature of the absorber plate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It presents a solar collector to be used in a system for heating water for bathing, whose main characteristics are its low cost and easy manufacturing and assembly. The absorbing surface of the collector is formed by an aluminum plate with eight flaps where they lodge PVC pipes. The catchment area of solar radiation corresponds to 1.3 meters. The collector box was made of wood, is covered by transparent glass and thermal insulation of tire chips and expanded polystyrene (EPS). Absorber tubes were connected in parallel through the use of PVC fittings and fixed to the plate by the use of metal poles and rivets. The entire absorber received paint flat black for better absorption of sunlight. The system worked on a thermosiphon assembly and absorber of the collector has been tested in two configurations: with the tubes facing up, directly exposed to the impact of sunlight and facing down, exchanging heat with the plate by conduction. It was determined the most efficient configuration for the correct purpose. The solar collector was connected to a thermal reservoir, also alternative, low-cost forming the system of solar water heating. We evaluated thermal parameters that proved the viability of the heating system studied

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The technical and economic viability of solar heating for swimming pools is unquestionable, besides there it replaces the high costs and environmental impacts of conventional supply of energy, and it improves an optimization in the pool heating uses. This work applies the principles of the greenhouse effect: advanced thermodynamics, heat retention and equalization of temperature, to optimize the solar heating equipment, reducing the area required by collectors as much as 40% (still estimated value) for commercial collectors, with minor architectural and aesthetic impacts on the environment. It features a solar heating alternative in pools, whose main characteristics: low cost, simplicity in manufacturing and assembly and a faster heating. The system consists of two collectors spiral hoses made of polyethylene with a hundred meters each, and working on a forced flow, with only one pass of the working fluid inside the coils, and is used to pump itself treatment of pool water to obtain the desired flow. One of the collectors will be exposed to direct solar radiation, and the other will be covered by a glass slide and closed laterally, so providing the greenhouse effect. The equipment will be installed in parallel and simultaneously exposed to the sun in order to obtain comparative data on their effectiveness. Will be presented results of thermal tests for this the two cases, with and without transparent cover. Will be demonstrated, by comparison, the thermal, economic and material feasibility of these systems for heating swimming pools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work a solar drying system for food dehydration was developed. It is a direct exposition drying apparatus that uses solar energy to heat the circulating air. First, the construction and assembly of this apparatus was described, in which was used scrap wraps of used tires for thermal insulation, allowing the reuse of solid waste, being an ecologically correct recycling option. After, the results obtained in experiments for cashew drying showed the thermal and economical feasibility of the proposed solar drying system, focusing on the process of flour production and in its chemical characterization. It was also demonstrated the social importance of this production for socially excluded people, since the value added to this fruit, in relation to its in nature form, may represent an option for job and income generation. The main features of the proposed dryer are its low cost and its easy fabrication and assembly process. After cashew drying, the obtained product was processed into flour by using a knife mill and it was added crushed rapadura to reduce the rancid taste caused by tannin

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It was studied a system for heating water to be used to obtain water for bathing at home, the absorbing surface of the collector is formed by one plate of polycarbonate. The polycarbonate plate has 6 mm thick, 1.050 mm wide and 1.500 mm long with an area equal to 1,575 m². The plate was attached by its edges parallel to PVC tubes of 32 mm. The system worked under the thermo-siphon and was tested for two configurations: plate absorber with and without isolation of EPS of 30 mm thick on the bottom surface in order to minimize heat losses from the bottom. The tank's thermal heating system is alternative and low cost, since it was constructed from a polyethylene reservoir for water storage, with a volume of 200 liters. Will present data on the thermal efficiency, heat loss, water temperature of thermal reservoir at the end of the process simulation and baths. Will be demonstrated the feasibility of thermal, economic and material pickup proposed for the intended purpose.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given the growing environmental crisis caused by degradation, mainly due to the use of polluting energy sources, increasing the growing use of renewable energies worldwide, with emphasis on solar energy, an abundant supply and available to everyone, which can be harnessed in several ways: electricity generation; dehydration of food; heating, disinfection and distillation and cooking. The latter has as its primary feature the viability of clean, renewable energy for society, combating ecological damage caused by large-scale use of firewood for cooking foods, use in tropical countries with high solar radiation, and has funding NGOs throughout the world with the goal of achieving low-income population. The proposed project consists of a solar cooker for concentration, working from the reflection of sunlight by a hub that they converge to a focal point at the bottom of the pot, getting lots of heat. The solar cooker under study consists of two elliptical reflecting parabolas made from the recycling of scrap TV antenna, having 0.29 m² of surface area for each antenna, which were covered by multiple mirrors of 2 mm thick and mounted on a metal structure, with correction for the mobility of the apparent movement of the sun. This structure was built with the recycling of scrap metal, possessing a relatively low cost compared with other solar cookers, around US$ 50.00. This cost becomes negligible, since that will involve a great benefit to not have fuel costs for each meal, unlike the use of gas or firewood for cooking food. The tests show that the cooker has reached the maximum temperature of 740 ° C, for boiling water in an average time of 28 minutes, cooking various types of foods such as potatoes, rice and pasta in an average time of 45 minutes and still going as a solar oven, making pizza baking and meat. These cooking times do not differ much from the cooking times on a gas stove, it becomes the solar cooker as a good consumer acceptance, and furthermore not to deliver the same gases that can poison the food as with the wood stove. Proves the viability of using the stove to cook or bake in two daily meals for a family, still presenting a position to improve his performance with the addition of new materials, equipment and techniques

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work presents a contribution in the study of modelings of transference of heat for foods submitted to the experimental tests in the considered solar oven, where the best modeling for the beefburger of chicken in study was evaluated, comparing the results, considering this food as a half-infinite(1er object considered model) and,after that, considered the chicken beefburger as a plain plate in transient regimen in two distinct conditions: not considering and another model considering the contribution of the generation term, through the Criterion of Pomerantsev. The Sun, beyond life source, is the origin of all the energy forms that the man comes using during its history and can be the reply for the question of the energy supplying in the future, a time that learns to use to advantage in rational way the light that this star constantly special tax on our planet. Shining more than the 5 billion years, it is calculated that the Sun still in them will privilege for others 6 billion years, or either, it is only in the half of its existence and will launch on the Earth, only in this year, 4000 times more energy that we will consume. Front to this reality, would be irrational not to search, by all means technical possible, to use to advantage this clean, ecological and gratuitous power plant. In this dissertation evaluate the performance of solar cooker of the type box. Laboratory of Solar Energy of the Federal University of the Great River of North - UFRN was constructed by the group (LES) a model of solar stove of the type box and was tested its viability technique, considering modeling foods submitted when baking in the solar oven, the cooker has main characteristic the easiness of manufacture and assembly, the low cost (was used material accessible composition to the low income communities) and simplicity in the mechanism of movement of the archetype for incidence of the direct solar light. They had been proposals modeling for calculations of food the minimum baking time, considering the following models of transference of heat in the transient state: object the halfinfinite, plain plate and the model of the sphere to study the necessary temperature for the it bakes of bread (considering spherical geometry). After evaluate the models of transmission of heat will be foods submitted you the processes of to it bakes of, the times gotten for the modeling with the experimental times of it bakes in the solar oven had been compared, demonstrating the modeling that more good that it portraies the accuracies of the results of the model

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study were projected, built and tested an electric solar dryer consisting of a solar collector, a drying chamber, an exhaust fan and a fan to promote forced hot air convection. Banana drying experiments were also carried out in a static column dryer to model the drying and to obtain parameters that can be used as a first approximation in the modeling of an electric solar dryer, depending on the similarity of the experimental conditions between the two drying systems. From the banana drying experiments conducted in the static column dryer, we obtained food weight data as a function of aqueous concentration and temperature. Simplified mathematical models of the banana drying were made, based on Fick s and Fourier s second equations, which were tested with the experimental data. We determined and/or modeled parameters such as banana moisture content, density, thin layer drying curves, equilibrium moisture content, molecular diffusivity of the water in banana DAB, external mass transfer coefficient kM, specific heat Cp, thermal conductivity k, latent heat of water evaporation in the food Lfood, time to heat food, and minimum energy and power required to heat the food and evaporate the water. When we considered the shrinkage of radius R of a banana, the calculated values of DAB and kM generally better represent the phenomenon of water diffusion in a solid. The latent heat of water evaporation in the food Lfood calculated by modeling is higher than the latent heat of pure water evaporation Lwater. The values calculated for DAB and KM that best represent the drying were obtained with the analytical model of the present paper. These values had good agreement with those assessed with a numeric model described in the literature, in which convective boundary condition and food shrinkage are considered. Using parameters such as Cp, DAB, k, kM and Lfood, one can elaborate the preliminary dryer project and calculate the economy using only solar energy rather than using solar energy along with electrical energy

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The generation of electricity in Brazil is predominantly renewable, with internal hydraulic generation being more than 70% of its energy matrix. The electricity rationing occurred in 2001 due to lack of rain, led the country to increase the participation of alternative energy sources. This need for new sources of energy makes the regional potential to be exploited, which configures the change of generation model from centralized generation to distributed generation. Among the alternative sources of energy, the solar energy is presented as very promising for Brazil, given that most of its territory is located near to the equator line, which implies days with greater number of hours of solar radiation. The state of Rio Grande do Norte (RN) has one of the highest levels of solar irradiation of the Brazilian territory, making it eligible to receive investments for the installation of photovoltaic solar plants. This thesis will present the state-of-the-art in solar photovoltaic power generation and will examine the potential for generation of solar photovoltaic power in Brazil and RN, based on solarimetrics measurements conducted by various institutions and also measurements performed in Natal, the state capital

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The use of solar energy for electricity generation has shown a growing interest in recent years. Generally, the conversion of solar energy into electricity is made by PV modules installed on fixed structures, with slope determined by the latitude of the installation site. In this sense, the use of mobile structures with solar tracking, has enabled increased production of the generated energy. However, the performance of these structures depends on the type of tracker and the position control used. In this work, it is proposed position control a strategy applied for a solar tracker, which will be installed in Laboratory of Power Electronics and Renewable Energy (LEPER), located in the Federal University of Rio Grande do Norte (UFRN). The tracker system is of polar type with daily positioning east-west and tilt angle manual adjustment in the seasonal periods, from north to south

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A model of a solar oven with a reflective surface composed of two mirror segments is presented, constituting a two semi-parabolic surfaces made of fiberglass, applied on a ceramic mold, intended to be used in residential and commercial cooking. The reflective surface of the semi-parable is obtained with the use of multiple plain segments of 2 mm wide mirrors. The semi-parabolic structure has visible movements that are comparable to that of the sun. The technical details of the manufacturing and assembling processes will be presented with an analysis of the viability of thermal, economic, and materials of such prototype. This prototype has important social implications and primordial aspects, which combats the ecological damages caused by the wide-scale use of firewood during cooking. It has been demonstrated that the solar oven has the capacity to cook simultaneous two meals distinct for a family of four

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An solar alternative system for water heating is presented. Is composed for one low cost alternative collector and alternative thermal reservoir for hot water storing. The collector of the system has box confectioned in composite material and use absorption coils formed for PVC tubes. The box of hot water storage was confectioned from a plastic polyethylene drum used for storage of water and garbage, coated for a cylinder confectioned in fiber glass. The principle of functioning of the system is the same of the conventionally. Its regimen of work is the thermosiphon for a volume of 250 liters water. The main characteristic of the system in considered study is its low cost, allowing a bigger socialization of the use of solar energy. It will be demonstrated the viabilities thermal, economic and of materials of the system of considered heating, and its competitiveness in relation to the available collectors commercially. Relative aspects will be boarded also the susceptibility the thermal degradation and for UV for the PVC tubes. It will be shown that such system of alternative heating, that has as main characteristic its low cost, presents viabilities thermal, economic and of materials

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An cylinder-parabolic solar concentrator is presented to produce steam for different applications. This prototype was built in glass fiber with dimensions that follow a study of optimization of parameters inherent in the optical reflection of sunlight by the surface of reflection and absorption of the same by tubing that leads the fluid of work. The surface of the concentrator of 2.24 m² has been covered by layers of mirror with 1.0 m of lenght and 2.0 cm wide. The absorb tubing consists of a copper tube diameter equal to 28 mm. The concentrator is moving to follow the apparent motion of the sun. It will be presented the processes of manufacturing and assembly of the concentrator proposed, which has as main characteristics the facilities construction and assembly, in addition to reduced cost. Will be presented data from tests performed to produce steam setting up some parameters that diagnose the efficiency of the concentrator. It will be demonstrated the viabilities thermal, economic and of materials of the proposed system.The maximum temperature achieved in the vacuum tube absorber was 232.1°C and average temperature for 1 hour interval was 171.5°C, obtained in a test with automation. The maximum temperature achieved in the output of water was 197.7°C for a temperature of 200.0°C in the absorber tube. The best average result of the water exit temperature to interval of 1 hour was 170.2°C for a temperature of 171.2°C, in the absorber tube, obtained in test with automation. Water exit mean temperatures were always above of the water steaming temperature. The concentrator present a useful efficiency of 38% and a production cost of approximately R$ 450,00 ( $ 160.34)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It presents a solar collector to be used in a system for heating water for bathing, whose main characteristics are low cost and easy manufacturing and assembly. The system operates under natural convection or thermosiphon. The absorbing surface of the collector is formed by twelve PVC pipes of 25 mm outside diameter connected in parallel via connections in T of the same material. The tubes were covered with absorbing fins made with recycled aluminum cans. We studied eight settings between absorber plate, thermal insulating EPS boards and thermal reservoirs 150 and 200 liters. It was determined the most efficient configuration for the correct purpose. We evaluated thermal parameters that proved the viability of the heating system studied

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We studied the feasibility of using a system of Solar Water Heating (SAS) with low cost, for three configurations. In configurations I and II have the collector grid absorber composed of six PVC tubes placed in parallel on the tile cement. In configuration II, the PVC tubes were transparent cover made of plastic bottles. Configuration III uses a collector composed of 12 black HDPE pipes, supported on four cement tiles 2.44 m x 0.50 m, two by two overlapping and interspersed with a filling of glass wool, comprising an area exposed to the global radiation incident of 2.44 m2, with the top two tiles painted matte black. In this configuration, the HDPE pipes replace conventional PVC pipes painted black. The total cost of SAS for configuration III, the most economical, was around $ 150.00. For the configurations tested the system of operation was thermosyphon collector. The study showed that the proposed systems have good thermal efficiency, are easy to install and handle and have low cost compared to conventional.