2 resultados para HIGHLY REACTIVE ORGANOLANTHANIDES

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Effluents from pesticide industries have great difficulty to decontaminate the environment and, moreover, are characterized by high organic charge and toxicity. The research group Center for Chemical Systems Engineering (CESQ) at the Department of Chemical Engineering of Polytechnical School of University of São Paulo and Department of Chemical Engineering, Federal University of Rio Grande do Norte have been applying the Advanced Oxidation Processes (AOP's) for the degradation of various types of pollutants. These processes are based on the generation of hydroxyl radicals, highly reactive substances. Thus, this dissertation aims to explore this process, since it has been proven to be quite effective in removing organic charge. Therefore, it was decided by photo-Fenton process applied to the degradation of the fungicide Thiophanate methyl in aqueous system using annular reactor (with lamp Philips HPLN 125W) and solar. The samples were collected during the experiment and analyzed for dissolved organic carbon (TOC) using a Shimadzu TOC (Shimadzu 5050A e VCP). The Doehlert experimental design has been used to evaluate the influence of ultraviolet radiation, the concentrations of methyl thiophanate (C12H14N4O4S2), hydrogen peroxide (H2O2) and iron ions (Fe2+), among these parameters, was considered the best experimental conditions, [Fe2+] = 0.6 mmol/L and [H2O2] = 0.038 mol/L in EXP 5 experiment and in SOL 5 experiment, obtaining a percentage of TOC removal of 60% in the annular reactor and 75% in the solar reactor

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three studies were performed using tailings kaolin for the synthesis of zeolite A. The first synthesis of zeolite A was performed using a kaolin waste generated from the beneficiation of kaolin for paper production process was studied. The kaolin waste was thermally activated at a temperature range of 550-800°C. For comparison was performed a synthesis pattern of Zeolite A(procedure IZA). The prepared materials were characterized by 27Al MAS NMR, X-ray diffraction and scanning electron microscopy with microprobe rays. The pre-tramento proved to be the most appropriate and suitable temperatures are between 600 and 700°C. Observed the formation of zeolite A in all materials, reaching 52% crystallinity, and the presence of phase sodalite and amorphous material. The second study was the use of a highly reactive metakaolin originating from the Jari region in the synthesis of zeolite A by a new method of hydrothermal synthesis. The zeolite is obtained pure and highly crystalline employing the Jari kaolin calcined at 600 ° C for 2h when the transformation to metakaolin occurs. Get to zeolite phase A at 4pm. The best crystallization time was of 24 h afforded a crystallinity of 67.9%. The third study was the evaluation of the NaOH / metakaolin and crystallization time on the synthesis of zeolite NaA from a sample of kaolin waste, named Kaolin Coverage. The experiments were performed using statistical design (axial points) and rejoinder the center point. The samples were characterized by X-ray diffraction (XRD), scanning microscopic analysis and chemical analysis using an EPMA microprobe. The results showed that a relationship exists between the amount of NaOH added and the crystallization time. The experiment performed using the lowest ratio NaOH / metakaolin (0.5) and shorter (4 h) produced an amorphous material. The increase ratio of NaOH / metakaolin and crystallization time leads to formation of a more crystalline NaA phase, but the presence of phase with sodalite as impurities