4 resultados para Gráfica
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
In this work we developed a computer simulation program for physics porous structures based on programming language C + + using a Geforce 9600 GT with the PhysX chip, originally developed for video games. With this tool, the ability of physical interaction between simulated objects is enlarged, allowing to simulate a porous structure, for example, reservoir rocks and structures with high density. The initial procedure for developing the simulation is the construction of porous cubic structure consisting of spheres with a single size and with varying sizes. In addition, structures can also be simulated with various volume fractions. The results presented are divided into two parts: first, the ball shall be deemed as solid grains, ie the matrix phase represents the porosity, the second, the spheres are considered as pores. In this case the matrix phase represents the solid phase. The simulations in both cases are the same, but the simulated structures are intrinsically different. To validate the results presented by the program, simulations were performed by varying the amount of grain, the grain size distribution and void fraction in the structure. All results showed statistically reliable and consistent with those presented in the literature. The mean values and distributions of stereological parameters measured, such as intercept linear section of perimeter area, sectional area and mean free path are in agreement with the results obtained in the literature for the structures simulated. The results may help the understanding of real structures.
Resumo:
This study aims to analyze the communication graphics of layouts of hypermedia interfaces oriented to Distance Education via the Internet. This proposal is justified by widening the offer of courses that modality and the consequent application of items of hypermedia for teaching-learning. The method of analysis involved the search nethnographic, addressed to the cycle student intermediary of the Training Program Continuing Medias in Education, and the evaluation heuristic of the interfaces of Virtual Learning Environment "E-Proinfo" and of the modules of the Cycle. This evaluation we observed the implementation of the attributes of usability and the degree of interactivity of each interface. The results revealed an inefficient implementation of the attributes of usability, which meant a consequent reduction of the levels of interactivity. As proposing the present Design Virtual Learning, a model of hypermedia layout, designed to generate usability for Virtual learning environments and extend the acquisition of literancy for students and tutors. This proposal design not hypermedia aims the demarcation of models pre-conceived, but the proposal of layout in which each element of hypermedia is applied with a view to generate a seaworthiness intuitive, more agile and efficient, in these ambients
Resumo:
The different characteristics and needs of mobile device users, the situations in which these devices are operated and the limitations and characteristics of these devices are all factors which influence usability and ergonomics; two elements highly required for achieving successful interaction between users and devices. This research aims to identify characteristics of interface design for apps in mobile device applications, focussing on design, visual publishing and content editing, and the actual process of creation of these interfaces, with a view to guarantee quality interaction through touch technology, in observance of service limitations, the opportunities offered by the devices and the application requirements. The study will examine the interface of the mobile device application titled “Brasil 247” which provides news broadcasts using the concept of usability and ergonomics mainly in the field of adaptation, searching and browsing informative articles, as well as clarifying the processes and techniques necessary to carry out interaction tests which seek to evaluate the usability of interface.
Resumo:
In this work we developed a computer simulation program for physics porous structures based on programming language C + + using a Geforce 9600 GT with the PhysX chip, originally developed for video games. With this tool, the ability of physical interaction between simulated objects is enlarged, allowing to simulate a porous structure, for example, reservoir rocks and structures with high density. The initial procedure for developing the simulation is the construction of porous cubic structure consisting of spheres with a single size and with varying sizes. In addition, structures can also be simulated with various volume fractions. The results presented are divided into two parts: first, the ball shall be deemed as solid grains, ie the matrix phase represents the porosity, the second, the spheres are considered as pores. In this case the matrix phase represents the solid phase. The simulations in both cases are the same, but the simulated structures are intrinsically different. To validate the results presented by the program, simulations were performed by varying the amount of grain, the grain size distribution and void fraction in the structure. All results showed statistically reliable and consistent with those presented in the literature. The mean values and distributions of stereological parameters measured, such as intercept linear section of perimeter area, sectional area and mean free path are in agreement with the results obtained in the literature for the structures simulated. The results may help the understanding of real structures.