24 resultados para Glass painting and staining -- Colorado -- Denver

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work presents the effect of plasma treatment when applied in fibers or carbon/glass posts in the adhesion fiber/resin and posts/cement. This has for objective the modification of the surface of the fibers, as well as the wettability of the posts, seeking the improvement of the adhesion and of the connection fiber/resin in the processing of polymeric composites reinforced with the same ones. 120 posts (Reforpost) were used and 30 meters of fibers of carbon and of glass (Fibrex), of the company Angelus. The samples were divided in three groups of 40 specimens: GROUP I - 20 posts of glass fiber and 20 of carbon without treatment to it shapes, GROUP II -20 posts of glass fiber and 20 of carbon treated to it shapes in the surface and GROUP III - 20 posts of glass fiber and 20 of carbon make with fibers in natura after plasma treatment. The plasma treatment was accomplished with oxygen and with temperature in the camera fixed at 200°C, for one hour of exhibition. The posts and the fibers were characterized before and after the treatment. The wettability was measure by pendent drop method, and interface fiber/resin and posts/cement were observed by optical and electronic microscopy. It was observed that both wettability and texture were increased with plasma treatment

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the occurrence of diseases in the use of structural reinforcements in composites, with presentation of concrete blanket detachment, has been identified the need to evaluate the performance of concrete reinforced with glass fiber. This study aims to evaluate these concretes by means of testing methodologies, using concrete with low resistance with structural reinforcement for confinement by preimpregnated glass fiber and traditional fiberglass blanket. The first stage of work was the development of methodologies for analysis, opting for four types, such as the acoustic survey, strength to compressive, the pull-off and ultrasound. Next, tests were carried out using the four selected methodologies in 30 of proof-of-specimens by 5x10 cm, 15 were reinforced with the traditional fiberglass blanket with 5specimens exposed to test a marine environment of marine coastline of Natal-RN and 15 were reinforced with a pre-impregnated glass fiber blanket, as well as 5specimens exposed to a test environment of the marine coastline of Natal-RN. After conducting the acoustic survey, it has been verified a lack of delaminating and air bubbles in the samples, confirming the absence of gross shortcomings in the implementation of the ribs both the traditional fiberglass blanket and in the preimpregnated fiber glass blanket. After carrying out methods of pull-off and compressive strengthening test it was observed that the reinforced proof-bodies with pre-impregnated glass blanket showed maximum stresses higher than the traditional fiberglass blanket; consequently a greater grip with the formation of a smaller area of . fracture, unlike traditional glass mat, which showed lower maximum stresses, with a greater area of fracture. It was also found that the traditional fiberglass blanket presented detachment of blanket-concrete interface, unlike the pre-impregnated fiberglass blanket, which showed a better grip on the blanket-concrete interface. In the trial of ultrasound there was no presence of cracks in the blanket-concrete interface, yielding to both blankets good compactness of the concrete. At the end of this work, they were developed and proposed two methods of testing for evaluation of reinforced concrete structures with composites, for standardization, the acoustic survey and pull-off

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The technique of surface coating using magnetron sputtering is one of the most widely used in the surface engineering, for its versatility in obtaining different films as well as in the micro / nanometric thickness control. Among the various process parameters, those related to the active species of the plasma are of the most fundamental importance in the mechanism and kinetics of deposition. In order to identify the active species of the plasma, parameters such as gas flow, pressure and density of electric power were varied during titanium coating on glass substrate. By flowing argon gas of 10, 20, 30, 40 and 50 sccm (cubic centimeters per minute) for each gas flow a sequential scan of the electric current of 0.10, 0.20, 0.30, 0.40 , 0.50 A. The maximum value of 0.50 A was chosen based both on literature data and on limitations of the equipment. The monitoring of plasma species present during the deposition was carried out in situ by the technique of optical emission spectroscopy (OES) through the spectrometer Ocean Optics USB2000 Series. For this purpose, an apparatus was developed to adapt the OES inside the plasma reactor to stay positioned closest to the target. The radiations emitted by the species were detected by an optical fiber placed behind the glass substrate and their intensities as a function of wavelength were, displayed on a monitor screen. The acquisition time for each condition of the plain parameters was related to the minima of spectral lines intensities due to the film formed on the substrate. The intensities of different emission lines of argon and titanium were then analyzed as a function of time, to determine the active species and estimate the thickness of the deposited films. After the deposition, the coated glasses thin films were characterized by optical transmittance through an infrared laser. It was found that the thickness and deposition rate determined by in situ analysis were consistent with the results obtained by laser transmittance

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research and development of wind turbine blades are essential to keep pace with worldwide growth in the renewable energy sector. Although currently blades are typically produced using glass fiber reinforced composite materials, the tendency for larger size blades, particularly for offshore applications, has increased the interest on carbon fiber reinforced composites because of the potential for increased stiffness and weight reduction. In this study a model of blade designed for large generators (5 MW) was studied on a small scale. A numerical simulation was performed to determine the aerodynamic loading using a Computational Fluid Dynamics (CFD) software. Two blades were then designed and manufactured using epoxy matrix composites: one reinforced with glass fibers and the other with carbon fibers. For the structural calculations, maximum stress failure criterion was adopted. The blades were manufactured by Vacuum Assisted Resin Transfer Molding (VARTM), typical for this type of component. A weight comparison of the two blades was performed and the weight of the carbon fiber blade was approximately 45% of the weight of the fiberglass reinforced blade. Static bending tests were carried out on the blades for various percentages of the design load and deflections measurements were compared with the values obtained from finite element simulations. A good agreement was observed between the measured and calculated deflections. In summary, the results of this study confirm that the low density combined with high mechanical properties of carbon fibers are particularly attractive for the production of large size wind turbine blades

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gradual replacement of conventional materials by the ones called composite materials is becoming a concern about the response of these composites against adverse environmental conditions, such as ultraviolet radiation, high temperature and moist. Also the search for new composite using natural fibers or a blend of it with synthetic fibers as reinforcement has been studied. In this sense, this research begins with a thorough study of microstructural characterization of licuri fiber, as a proposal of alternative reinforcement to polymeric composites. Thus, a study about the development of two composite laminates was done. The first one, involving only the fiber of licuri and the second comprising a hybrid composite based of fiber glass E and the fiber of licuri, in order to know the performance of the fiber when of fiber across the hybridization process. The laminates were made in the form of plates using the tereftálica ortho-polyester resin as matrix. The composite laminate made only by licuri fiber had two reinforcing fabric layers of unidirectional licuri and the hybrid composite had two reinforcing layers of unidirectional licuri fabric and three layers of fiber short glass-E mat. Finally, both laminates was exposed to aging acceleration in order to study the influence of environmental degradation involving the mechanical properties and fracture characteristics thereof. Regarding the mechanical properties of composites, these were determined through uniaxial tensile tests, uniaxial compression and three bending points for both laminates in original state, and uniaxial tensile tests and three bending points after accelerated aging. As regards the study of structural degradation due to aging of the laminates, it was carried out based on microscopic analysis and microstructure, as well as measuring weight loss. The characteristics of the fracture was performed by macroscopic and microscopic (optical and SEM) analysis. In general, the laminated composites based on fiber licuri showed some advantages in their responses to environmental aging. These advantages are observed in the behavior related to stiffness as well as the microstructural degradation and photo-oxidation processes. However, the structural integrity of this laminate was more affected in case the action of uniaxial tensile loads, where it was noted a lower rate of withholding his last resistance property

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The contemporary conjuncture based on the capitalistic knowledge converges to the corporal consciousness that makes us see, feel, taste and hear, be in/to pieces. Disembodied reason legitimate and legislate ways of being and living socially and its development is the dehumanization of human relations causing pain and suffering. The objective of this work is to discuss the body as pedagogical matrix through imagistic/artistic elements: music, painting and literature. Metaphors lead to self knowledge of human subjectivity and approach us to the kaleidoscope of sensitive knowledge and enables learning to learn with the infinite combinations of images, knowledge, feelings and worldviews. The song Memória da Pele comes in the voice of Maria Betânia speak of the memories that are not mine, but are tattooed in me in the memory of skin, singing the memories of a love lived by who tries to forget rationally, but the body insists on remembering. It is password to think about what we are. The short story by Clarice Lispector, entitled Miss Algarve, narrates the life story of an unmarried and virgin woman, and her encounter with an alien called Ixtlan. Until then, she who lived as if every day were a Monday, found herself seduced by the pleasure of having a body in contact with another body, which also allowed her to give visibility to the bodies of others. She had repudiation by the immorality that her body and the other s perspired. The discovery of the body brings important lessons for nursing, involving our body and the others'. The painting the flying bed or Henry Ford Hospital, by Frida Kahlo, is our final metaphor. The traumatic experience of abortion is shown in this painting trough the picture of the artist naked in a hospital bed. This painting invites us to reflect on our work process. We need to think in multiple dimensions of the being and accept the invitation of art, so that the lightness confronts us with the weight imposed by the hegemonic ideology. I believe it is not a single view, but the many views that should justify the knowledge and practices of nursing; what matters is that they are woven into the dialogue, democracy, provided that protagonism of those individuals involved in this process, in the wandering and uncertainty, in the rewiring, solidarity, plurality. To this end, the body must be the great pedagogue that is able to be viewed not as a tapestry seen by the right view, as the logical knowledge sees, but seen by the opposite side in its singular, irregular, discontinuous weavings

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective in this work is the analysis of resonance frequency microstrip structures with glass fiber and electromagnetic band gap (EBG/PBG) substrate and analysis of microstrip antennas with rectangular patch of superconductor of high critical temperature (HTS). In this work was used the superconductors YBCO (critical temperature of 90K), SnBaCaCuOy (critical temperature of 160K), and Sn5InCa2Ba4Cu10Oy (critical temperature of 212K) with results in Gigahertz and Terahertz. Was used microstrip antennas arrays planar and linear phase and linear phase planar with patch with superconductor. It presents a study of the major theories that explain superconductivity. In phase arrays were obtained the factors arrays for such configurations, and the criteria of phase and spacing between the elements compound in the array, which were examined in order to get a main lobe with high directivity and high gain. In the analysis we used the method of Transverse Transmission Line (TTL) used in domain of the Fourier Transform (FTD). The LTT is a full wave method, which obtains the electromagnetic field in terms of the components transverse of the structure. The addition of superconductive patch is made using the boundary condition resistive complex. Results are obtained resonance frequency as a function of the parameters of the antenna, radiation patterns of the E and H Planes, for the phase antenna arrays in linear and planar configurations, for different values of the phase and the spacing between elements

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The advantage in using vegetable fibres in place of synthetic fibres such as glass fibre, for reinforcements in composites are: biodegradability, low cost, low density, good tenacity, good thermal properties, low energy content and reduced use of instruments for its treatment or processing. Even though, problems related to low mechanical performance of some of the natural fibres, has caused difficulty in their direct application in structural elements. The use of alternative materials like hybrid composites has been encouraged, thus trying to better the structural performance of the composites with natural fibres. This work presents a comparative study of the strength and stiffness of hybrid composites with orthopthalic polyester matrix reinforced with E-fibre glass, jute and curauá. The experimental part includes uniaxial tension and three point bending tests to determine the mechanical properties of the final product. The hybrid composite was manufactured in a local industry and was in the form of laminates. All the samples were projected to withstand the possible structural applications as reservoirs and pipes. CH (laminated hybrid composite with glass and curauá fibres). The results obtained show clearly the influence of the hybridization in all the types tested and indicate a good mechanical performance of the composite with glass/curauá fibres in relation to the composite with glass fibres. Aspects in relation to the interfaces glass/curauá composites besides the fracture characteristics for all loading types were also analysed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The advantages of the use of vegetable fibers on the synthetic fibers, such as glass fibers, in the reinforcements in composites are: low cost, low density, good tenacity, good thermal properties and reduced use of instruments for their treatment or processing. However, problems related to poor performance of some mechanical natural fibers, have hindered its direct use in structural elements. In this sense, the emergence of alternative materials such as hybrids composites, involving natural and synthetic fibers, has been encouraged by seeking to improve the performance of structural composites based only on natural fibers. The differences between the physical, chemical and mechanical properties of these fibers, especially facing the adverse environmental conditions such as the presence of moisture and ultraviolet radiation, is also becoming a concern in the final response of these composites. This piece of research presents a comparative study of the strength and stiffness between two composite, both of ortoftalic polyester matrix, one reinforced with fibers of glass-E (CV) and other hybrid reinforced with natural fibers of curauá and fiberglass-E (CH). All the comparative study is based on the influence of exposure to UV rays and steam heated water in composites, simulating the aging environment. The conditions for the tests are accelerated through the use of the aging chamber. The composites will be evaluated through tests of uniaxial static mechanical traction and bending on three points. The composite of glass fiber and hybrid manufacturing industry are using the rolling manual (hand lay-up) and have been developed in the form of composites. All were designed to meet possible structural applications such as tanks and pipes. The reinforcements used in composites were in the forms of short fiber glass-E quilts (450g/m2 - 5cm) of continuous wires and fuses (whose title was of 0.9 dtex) for the curauá fibers. The results clearly show the influence of aging on the environmental mechanical performance of the composite CV and CH. The issues concerning the final characteristics of the fracture for all types of cargoes studied were also analyzed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last decades there was a significant increasing of the numbers of researchers that joint efforts to find alternatives to improve the development of low environmental impact technology. Materials based on renewable resources have enormous potentials of applications and are seen as alternatives for the sustainable development. Within other parameters, the sustainability depends on the energetic efficiency, which depends on the thermal insulation. Alternative materials, including vegetal fibers, can be applied to thermal insulation, where its first goal is to minimize the loss of energy. In the present research, it was experimentally analyzed the thermal behavior of fiber blankets of sisal (Agave sisalana) with and without surface treatment with oxide hidroxide (NaOH). Blankets with two densities (1100/1200 and 1300/1400 g/m2) were submitted to three rates of heat transfer (22.5 W, 40 W and 62.5 W). The analysis of the results allowed comparing the blankets treated and untreated in each situation. Others experiments were carried out to obtain the thermal conductivity (k), heat capacity (C) and the thermal diffusivity (α) of the blankets. Thermo gravimetric analyses were made to the verification of the thermal stability. Based on the results it was possible to relate qualitatively the effect of the heat transfer through the sisal blankets subjected to three heat transfer rates, corresponding to three temperature values (77 °C, 112 °C e 155 °C). To the first and second values of temperature it was verified a considerable reduction on the rate of heat transfer; nevertheless, to the third value of temperature, the surface of the blankets (treated and untreated) in contact with the heated surface of the tube were carbonized. It was also verified, through the analyses of the results of the measurements of k, C e α, that the blankets treated and untreated have values near to the conventional isolating materials, as glass wool and rock wool. It could be concluded that is technically possible the use of sisal blankets as constitutive material of thermal isolation systems in applications where the temperature do not reach values greater than 112 ºC

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are a number of damaging mechanisms that various materials can suffer in service. However, when working with polymer composite materials, this is something that requires analysis, especially when exposed to adverse environmental conditions. Thus, the objective of the present thesis is the study of the direct influence of environmental aging and the form of hybridization of the reinforcement woven on the structural stability, surfacedegradation and fracture process of polymer composites laminates. For this, the development of two polymer composite laminates was necessary, where one of them was reinforced with a bi-directional woven with hybrid strandsofkevlar-49/glass-Efibers, and the other also with a bi-directionalwoven, however with weft and warpformed of alternating strandsof Kevlar-49 fibers and glass-E fiber The reinforcementwoven are industrially manufactured. Both laminates use a polyester resin as a matrixand are made up of four layers each. All laminates were industrially prepared by the hand lay-up method of manufacturing. To do this, test specimens were manufactured of the respective laminates and submitted to environmental aging accelerated through the aging chamber. They were exposed to alternating cycles of UV radiation and moisture (heated steam) for a standard defined period. At the end of the exposure period the specimens were subjected to mechanical tests of uniaxial tensile and bending in three points and to the characterizationsof the fracture and surface deterioration. In addition, they were submitted to a structural degradation assessment by the measurement of mass variation technique (MMVT) and the measurement of thickness variation technique (MTVT), this last technique being developed in this thesis. At the end of the analysis it was observed that the form of hybridization of the reinforcement woven and the aging process directly influence with losses or gain in mechanical properties, with losses in the structural degradation and in the formation and propagation of damage mechanism of the developedcomposite laminates

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of composite materials and in particular the fiber-reinforced plastics (FRP) has gradually conquered space from the so called conventional materials. However, challenges have arisen when their application occurs in equipment and mechanical structures which will be exposed to harsh environmental conditions, especially when there is the influence of environmental degradation due to temperature, UV radiation and moisture in the mechanical performance of these structures, causing irreversible structural damage such as loss of dimensional stability, interfacial degradation, loss of mass, loss of structural properties and changes in the damage mechanism. In this context, the objective of this thesis is the development of a process for monitoring and modeling structural degradation, and the study of the physical and mechanical properties in FRP when in the presence of adverse environmental conditions (ageing). The mechanism of ageing is characterized by controlled environmental conditions of heated steam and ultraviolet radiation. For the research, it was necessary to develop three polymer composites. The first was a lamina of polyester resin reinforced with a short glass-E fiber mat (representing the layer exposed to ageing), and the other two were laminates, both of seven layers of reinforcement, one being made up only of short fibers of glass-E, and the other a hybrid type reinforced with fibers of glass-E/ fibers of curaua. It should be noted that the two laminates have the lamina of short glass-E fibers as a layer of the ageing process incidence. The specimens were removed from the composites mentioned and submitted to environmental ageing accelerated by an ageing chamber. To study the monitoring and modeling of degradation, the ageing cycles to which the lamina was exposed were: alternating cycles of UV radiation and heated steam, a cycle only of UV radiation and a cycle only of heated steam, for a period defined by norm. The laminates have already undergone only the alternating cycle of UV and heated steam. At the end of the exposure period the specimens were subjected to a structural stability assessment by means of the developed measurement of thickness variation technique (MTVT) and the measurement of mass variation technique (MMVT). Then they were subjected to the mechanical tests of uniaxial tension for the lamina and all the laminates, besides the bending test on three points for the laminates. This study was followed by characterization of the fracture and the surface degradation. Finally, a model was developed for the composites called Ageing Zone Diagram (AZD) for monitoring and predicting the tensile strength after the ageing processes. From the results it was observed that the process of degradation occurs Abstract Raimundo Nonato Barbosa Felipe xiv differently for each composite studied, although all were affected in certain way and that the most aggressive ageing process was that of UV radiation, and that the hybrid laminated fibers of glass-E/curaua composite was most affected in its mechanical properties

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The technical and economic viability of solar heating for swimming pools is unquestionable, besides there it replaces the high costs and environmental impacts of conventional supply of energy, and it improves an optimization in the pool heating uses. This work applies the principles of the greenhouse effect: advanced thermodynamics, heat retention and equalization of temperature, to optimize the solar heating equipment, reducing the area required by collectors as much as 40% (still estimated value) for commercial collectors, with minor architectural and aesthetic impacts on the environment. It features a solar heating alternative in pools, whose main characteristics: low cost, simplicity in manufacturing and assembly and a faster heating. The system consists of two collectors spiral hoses made of polyethylene with a hundred meters each, and working on a forced flow, with only one pass of the working fluid inside the coils, and is used to pump itself treatment of pool water to obtain the desired flow. One of the collectors will be exposed to direct solar radiation, and the other will be covered by a glass slide and closed laterally, so providing the greenhouse effect. The equipment will be installed in parallel and simultaneously exposed to the sun in order to obtain comparative data on their effectiveness. Will be presented results of thermal tests for this the two cases, with and without transparent cover. Will be demonstrated, by comparison, the thermal, economic and material feasibility of these systems for heating swimming pools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Materials denominated technical textiles can be defined as structures designed and developed with function to fulfill specific functional requirements of various industrial sectors as are the cases of the automotive and aerospace industries. In this aspect the technical textiles are distinguished from conventional textile materials, in which the aesthetic and of comfort needs are of primordial importance. Based on these considerations, the subject of this dissertation was established having as its main focus the study of development of textile structures from aramid and glass fibers and acting in order to develop the manufacture of composite materials that combine properties of two different structures, manufactured in an identical operation, where each structure contributes to improving the properties of the resulting composite material. Therefore were created in laboratory scale, textile structures with low weight and different composition: aramid (100%), glass (100%) and aramid /glass (65/35%), in order to use them as a reinforcing element in composite materials with polyester matrix. These composites were tested in tension and its fracture surface, evaluated by MEV. Based on the analysis of mechanical properties of the developed composites, the efficiency of the structures prepared as reinforcing element were testified by reason of that the resistance values of the composites are far superior to the polyester matrix. It was also observed that hybridization in tissue structure was efficient, since the best results obtained were for hybrid composites, where strength to the rupture was similar to the steel 1020, reaching values on the order of 340 MPa

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aims to evaluate the mechanical properties of polymer matrix composites reinforced with sisal fabric bidirectional tissue (Agave sisalana,) and E-glass fibers, containing the following configuration: a polymer matrix hybrid composite (Polyester Resin orthophalic) reinforced with three (3) layers of glass fibers and alternating-2 (two) layers of bidirectional sisal fabric, and finally a composite of polymer matrix reinforced with five (5) layers of glass fiber mat-type E. For this purpose as first step, the preparation of by sisal, since they are not on the market. The composites were made by manual lamination (Hand lay-up) and evaluated for tensile properties and three point bending both in the dry, and wet conditions aswele as immersed in oil. Macroscopic and microscopic characteristics of the materialsweve awalysed, after the completion of the mechanical tests. After the studies, it was proven that the sisal fiber decreases the tensile stiffness of the material above 50% for both situations studied the tensile strength of the material decreases by approximately 40% for the cases mentioned, and when compared to the specific strength stiffness values drop to 14.6% and 29.02% respectively for the dry state only. Constants for bending the values were are to approximately 50% to 25% for strength and stiffness of the material for the cases dry, wet and immersed in oil. Under the influence of tension fluids do not interfere in the stiffness of the material for the bending tests, the same does not occur with the resistance, and these values are modified only in the cases stiffness and flexural strength