6 resultados para Ginga-NCL
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Many challenges have been imposed on the middleware to support applications for digital TV because of the heterogeneity and resource constraints of execution platforms. In this scenario, the middleware must be highly configurable so that it can be customized to meet the requirements of applications and underlying platforms. This work aims to present the GingaForAll, a software product line developed for the Ginga - the middleware of the Brazilian Digital TV (SBTVD). GingaForAll adds the concepts of software product line, aspect orientation and model-driven development to allow: (i) the specification of the common characteristics and variables of the middleware, (ii) the modularization of crosscutting concerns - both mandatory and concepts variables - through aspects, (iii) the expression of concepts as a set of models that increase the level of abstraction and enables management of various software artifacts in terms of configurable models. This work presents the architecture of the software product line that implements such a tool and architecture that supports automatic customization of middleware. The work also presents a tool that implements the process of generating products GingaForAll
Resumo:
Due to the large amount of television content, which emerged from the Digital TV, viewers are facing a new challenge, how to find interesting content intuitively and efficiently. The Personalized Electronic Programming Guides (pEPG) arise as an answer to this complex challenge. We propose TrendTV a layered architecture that allows the formation of social networks among viewers of Interactive Digital TV based on online microblogging. Associated with a pEPG, this social network allows the viewer to perform content filtering on a particular subject from the indications made by other viewers of his network. Allowing the viewer to create his own indications for a particular content when it is displayed, or to analyze the importance of a particular program online, based on these indications. This allows any user to perform filtering on content and generate or exchange information with other users in a flexible and transparent way, using several different devices (TVs, Smartphones, Tablets or PCs). Moreover, this architecture defines a mechanism to perform the automatic exchange of channels based on the best program that is showing at the moment, suggesting new components to be added to the middleware of the Brazilian Digital TV System (Ginga). The result is a constructed and dynamic database containing the classification of several TV programs as well as an application to automatically switch to the best channel of the moment
Resumo:
Nowadays, classifying proteins in structural classes, which concerns the inference of patterns in their 3D conformation, is one of the most important open problems in Molecular Biology. The main reason for this is that the function of a protein is intrinsically related to its spatial conformation. However, such conformations are very difficult to be obtained experimentally in laboratory. Thus, this problem has drawn the attention of many researchers in Bioinformatics. Considering the great difference between the number of protein sequences already known and the number of three-dimensional structures determined experimentally, the demand of automated techniques for structural classification of proteins is very high. In this context, computational tools, especially Machine Learning (ML) techniques, have become essential to deal with this problem. In this work, ML techniques are used in the recognition of protein structural classes: Decision Trees, k-Nearest Neighbor, Naive Bayes, Support Vector Machine and Neural Networks. These methods have been chosen because they represent different paradigms of learning and have been widely used in the Bioinfornmatics literature. Aiming to obtain an improvment in the performance of these techniques (individual classifiers), homogeneous (Bagging and Boosting) and heterogeneous (Voting, Stacking and StackingC) multiclassification systems are used. Moreover, since the protein database used in this work presents the problem of imbalanced classes, artificial techniques for class balance (Undersampling Random, Tomek Links, CNN, NCL and OSS) are used to minimize such a problem. In order to evaluate the ML methods, a cross-validation procedure is applied, where the accuracy of the classifiers is measured using the mean of classification error rate, on independent test sets. These means are compared, two by two, by the hypothesis test aiming to evaluate if there is, statistically, a significant difference between them. With respect to the results obtained with the individual classifiers, Support Vector Machine presented the best accuracy. In terms of the multi-classification systems (homogeneous and heterogeneous), they showed, in general, a superior or similar performance when compared to the one achieved by the individual classifiers used - especially Boosting with Decision Tree and the StackingC with Linear Regression as meta classifier. The Voting method, despite of its simplicity, has shown to be adequate for solving the problem presented in this work. The techniques for class balance, on the other hand, have not produced a significant improvement in the global classification error. Nevertheless, the use of such techniques did improve the classification error for the minority class. In this context, the NCL technique has shown to be more appropriated
Resumo:
Model-oriented strategies have been used to facilitate products customization in the software products lines (SPL) context and to generate the source code of these derived products through variability management. Most of these strategies use an UML (Unified Modeling Language)-based model specification. Despite its wide application, the UML-based model specification has some limitations such as the fact that it is essentially graphic, presents deficiencies regarding the precise description of the system architecture semantic representation, and generates a large model, thus hampering the visualization and comprehension of the system elements. In contrast, architecture description languages (ADLs) provide graphic and textual support for the structural representation of architectural elements, their constraints and interactions. This thesis introduces ArchSPL-MDD, a model-driven strategy in which models are specified and configured by using the LightPL-ACME ADL. Such strategy is associated to a generic process with systematic activities that enable to automatically generate customized source code from the product model. ArchSPLMDD strategy integrates aspect-oriented software development (AOSD), modeldriven development (MDD) and SPL, thus enabling the explicit modeling as well as the modularization of variabilities and crosscutting concerns. The process is instantiated by the ArchSPL-MDD tool, which supports the specification of domain models (the focus of the development) in LightPL-ACME. The ArchSPL-MDD uses the Ginga Digital TV middleware as case study. In order to evaluate the efficiency, applicability, expressiveness, and complexity of the ArchSPL-MDD strategy, a controlled experiment was carried out in order to evaluate and compare the ArchSPL-MDD tool with the GingaForAll tool, which instantiates the process that is part of the GingaForAll UML-based strategy. Both tools were used for configuring the products of Ginga SPL and generating the product source code
Resumo:
In this work we present the architecture and implementation of MyPersonal-EPG, a personal EPG with support to recommendations, built on top of the Ginga middleware, that fulfill the following requirements: (i) to allow users to build their own personal programming grids, based on programming guides from several broadcasters; (ii) to offer a mechanism to tune the desired channels on the moment the selected programs are about to begin; (iii) to allow users to select the desired programs categories; (iv) to offer programs recommendations, in both synchronous and asynchronous way, based on the categories previously selected by users; (v) to allow users to modify the current configuration options; (vi) to allow the creation of several users accounts, so that each user can store its own information. The application‟s usability test is also presented and its results are discussed and analyzed
Resumo:
The tracking between models of the requirements and architecture activities is a strategy that aims to prevent loss of information, reducing the gap between these two initial activities of the software life cycle. In the context of Software Product Lines (SPL), it is important to have this support, which allows the correspondence between this two activities, with management of variability. In order to address this issue, this paper presents a process of bidirectional mapping, defining transformation rules between elements of a goaloriented requirements model (described in PL-AOVgraph) and elements of an architectural description (defined in PL-AspectualACME). These mapping rules are evaluated using a case study: the GingaForAll LPS. To automate this transformation, we developed the MaRiPLA tool (Mapping Requirements to Product Line Architecture), through MDD techniques (Modeldriven Development), including Atlas Transformation Language (ATL) with specification of Ecore metamodels jointly with Xtext , a DSL definition framework, and Acceleo, a code generation tool, in Eclipse environment. Finally, the generated models are evaluated based on quality attributes such as variability, derivability, reusability, correctness, traceability, completeness, evolvability and maintainability, extracted from the CAFÉ Quality Model