14 resultados para Germination.
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The mobilization of food reserves in storage tissues and allocation of their hydrolysis products in the growing axis are critical processes for the establishment of seedlings after germination. Therefore, it is crucial for mobilization of reserves to be synchronized with the growing axis, so that photosynthetic activity can be started before depletion of reserves. For this, integrative approaches involving different reserves, different hydrolysis products and interaction between storage and growing axis tissues, either through hormones or metabolites with signaling role, can contribute greatly to the elucidation of the regulation mechanisms for reserve mobilization. In this study, was hypothesized that hormones and metabolites have different actions on reserve mobilization, and there must be a crossed effect of sugars on the mobilization of proteins and amino acids on lipids and starch mobilization in sunflower seedlings. This study was conducted with seeds of sunflower (Helianthus annuus L.) hybrid Helio 253 using in vitro culture system. Seeds were germinated on Germitest® paper and grown on agar-water 4 g/L without addition of nutrients during 9 days after imbibition (DAI) for growth curve. To verify the effect of metabolites and hormones, seedlings were transferred in the 2nd DAI to agar-water 4 g/L supplemented with increasing concentrations of sucrose or L-glutamine, abscisic acid, gibberellic acid or indolebutyric acid. The results of this study confirm that the mobilization of lipids and storage proteins occurs in a coordinated manner during post-germination growth in sunflower, corroborating the hypothesis that the application of external carbon (sucrose) and nitrogen (L-glutamine) sources can delay the mobilization of these reserves in a crossed way. Moreover, considering the changes in the patterns of reserve mobilization and partition of their products in seedlings treated with different growth regulators, it is evident that the effects of metabolites and hormones must involve, at least in part, distinct mechanisms of action
Resumo:
Oilseeds are a high-value natural resource, due to its use as a substitute for petroleum. However, the storage time can reduce seed viability and oil quality. Therefore, scientific efforts have been made to provide a increment of storage time, germination rates and plant establishment of high-value oilseeds. The seedling establishment depends of the plant pass over the functional transition stage, characterized by a metabolic change from heterotrophic condition to autotrophic one. The storage oil mobilization is performed by β-oxidation process and the glyoxylate cycle. Also, the functional transition involves acclimation to photosynthetic condition, which generally includes the participation of antioxidant system and the reactive oxygen species, the latter are produced in various reactions of primary and secondary metabolism. In the present study, Catalase was inhibited during the functional transition of sunflower and safflower, after were performed many analyzes to elucidate the effects caused on the SOD and APX antioxidant systems. Also, were checked the changes in expression pattern of the glyoxylate cycle enzymes markers, ICL and MLS. It was observed that after CAT inhibition, the SOD and APX antioxidant systems allow the seedling establishment. Besides, was verified that both oilseeds can be accelerate the reverse mobilization and the photosynthetic establishment when Catalase activity has dramatically decreased
Resumo:
The brazilian-plum (Spondias tuberosa, His) is a tropical fruit tree that has been consolidated in the market for agribusiness processing, due to its characteristic flavor of fruit. Accordingly, studies to optimize the propagation of plants are necessary for production of seedlings with agronomic and quality assurance measures. This study aimed at determining the efficient techniques for uniform seed germination, as brazilian-plum seed present mechanical dormancy, and establish optimal culture media for multiplication of shoots from the in vitro micropropagation. Firstly, in a greenhouse at the Universidade Federal do Rio Grande do Norte, was evaluated the influence of different methods of breaking dormancy in the emergence of seedlings of brazilian-plum and speed of germination (IVG) of seeds. After 60 days of cultivation, it was found that splay in the distal portion of the seed was the best treatment, with rates of 85.33% in germinability and 3.415 of IVG, compared with the treatment of seed-soaking in water for 12h + humus and the control group. Subsequently, new sources of seedling explants were obtained in studies of tissue culture. Laboratory of Plant Biotechnology that the university, was used stem apex, nodal segments and internodes in search of decontamination with various concentrations of calcium hypochlorite [Ca(OCl)2] and micropropagation, inoculating them in half WPM (1980) with various concentrations of 6-benzylaminopurine (BAP). We used 10 sample units with three replications for different concentrations of [Ca(OCl)2], BAP and explants type. After thirty days, which was observed for the control of contamination, during the establishment in vitro, concentrations of [Ca(OCl)2] between 0.5% and 2.0% were effective in combating exogenous contamination of the apex. In nodal segments and internodes, concentrations of [Ca(OCl)2] between 1.0% and 2.0% and 1.5% and 2.0% were respectively, sufficient to reduce the percentage of losses in these infestations explants. For micropropagation, the culture medium supplemented with 0.1 mg.L-1 BAP promotes better development of multiple shoots per explants from nodal segment. However, success does not get to shoot training in internodal segment
Resumo:
Flowering is controlled by several environmental and endogenous factors, usually associated with a complex network of metabolic mechanisms. The gene characterization in Arabidopsis model has provided much information about the genetic and molecular mechanisms that control flowering process. Some of these genes had been found in rice and maize. However, in sugarcane this processe is not well known. It is known that early flowering may reduce its production up to 60% at northeast conditions. Considering the impact of early flowering in sugarcane production, the aim of this work was to make the gene characterization of two cDNAs previously identified in subtractive cDNA libraries: scPKCI and scSHAGGY. The in silico analysis showed that these two cDNAs presented both their sequence and functional catalytic domains conserved. The results of transgenic plants containing the overexpression of the gene cassette scPKCI in sense orientation showed that this construction had a negative influence on the plant development as it was observed a decrease in plant height and leaf size. For the scPKCI overexpression in antisense orientation it was observed change in the number of branches from T1 transgenic plants, whereas transgenic T2 plants showed slow development during germination and initial stages of development. The other cDNA analyzed had homology to SHAGGY protein. The overexpression construct in sense orientation did not shown any effect on development. The only difference observed it was an increase in stigma structure. These results allowed us to propose a model how these two genes may be interact and affect floweringdevelopment.
Resumo:
Seed germination and seedling establishment are critical processes for commercial plantation and depend directly on reserve mobilization as a source of cellular fuels and biosynthetic precursors. In this way, we investigated the coordination among reserve mobilization, metabolite partitioning, and mobilizing enzyme activities in Moringa oleifera Lam (moringa) an oil-seeded species employed in biofuel production. Seeds were germinated under controlled conditions and seedlings were grown hydroponically at a greenhouse. Samples were harvested at 0, 4, 8, 10, 12, 16, and 20 days after imbibition (DAI). The contents of dry mass (DM), neutral lipids (NL), soluble proteins (SP), starch, total soluble sugars (TSS), non-reducing sugars (NRS), and total free amino acids (TFAA) as the activity of isocitrate lyase (ICL), acid proteases, and amylases were determined. The mobilization of storage proteins was initiated during seed germination whereas the mobilization of storage lipids and starch was triggered throughout seedling establishment although all reserves have been depleted until 20 DAI. The partitioning of DM and metabolites to the roots and the shoots was uneven during seedling establishment. Low shoot/root ratio on the basis of DM could be related to the natural occurrence of moringa in drought climates. In the roots, TSS, NRS, and TFAA were accumulated from 12 to 16 DAI and then were consumed until the end of the experiment. In the shoots, TSS and TFAA were consumed in parallel with NRS accumulation from 12 to 20 DAI. The activity of ICL, acid proteases, and amylases was coordinated with the mobilization of lipids, proteins and starch respectively. Thus, we propose that the patterns of reserve mobilization and metabolite partitioning verified in moringa seem distinct from those found to other tree species and may be involved in metabolic strategies to enable environment colonization
Resumo:
Mimosa caesalpiniaefolia Benth. is a forest species of the Mimosaceae family, recommended for recovery of degraded areas. The evaluation of vigor by biochemical tests have been an important tool in the control of seed quality programs, and the electrical conductivity and potassium leaching the most efficient in the verifying the physiological potential. The objective, therefore, to adjust the methodology of the electrical conductivity test for seeds of M. caesalpiniaefolia, for then compare the efficiency of this test with the potassium in the evaluation of seed vigor of different lots of seeds M. caesalpiniaefolia. To test the adequacy of the electrical conductivity were used different combinations of temperatures , 25 °C and 30 ºC, number of seeds , 25 and 50, periods of imbibition , 4 , 8 , 12 , 16 and 24 hours , and volumes deionized water, 50 mL and 75mL. For potassium leaching test, which was conducted from the results achieved by the methodology of the adequacy of the electrical conductivity test, to compare the efficiency of both tests , in the classification of seeds at different levels of vigor, and the period 4 hours also evaluated because the potassium leaching test can be more efficient in the shortest time . The best combination obtained in experiment of electrical conductivity is 25 seeds soaked in 50 mL deionized or distilled water for 8 hours at a temperature of 30 ° C. Data were subjected to analysis of variance, the means were compared with each other by F tests and Tukey at 5 % probability, and when necessary polynomial regression analysis was performed. The electrical conductivity test performed at period eight hour proved to be more efficient in the separation of seed lots M. caesalpiniaefolia at different levels of vigor compared to the potassium test
Resumo:
Dormancy is an inherent property of the seeds that define the environmental conditions in which they are able to germinate and their presence is an adaptive trait common in species inhabiting semiarid regions. Moreover, the ability of seedling establishment in these environments has been related to the size, strength and chemical characteristics of the seeds. This study investigated patterns of dormancy and germination speed in tree species of the Caatinga, exploring how the seed size influence the processes of germination, seedling size and biomass allocation. In addition, we aim to investigate the chemical characteristics of the reserves, to verify a possible relationship between nutritional content and the process of seed germination. Therefore, seeds were collected from ten species of woody Caatinga for tests of breaking dormancy, germination and biochemical characterization. Overall, the results show that the scarification treatments mechanical and chemical, and thermal shock influenced the percentage and speed of germination in 50 % of the species, suggesting that they have some level of physical dormancy in the seeds. Biochemical characterization showed the existence of large amounts of carbohydrates in the seeds of all species, low proportion of protein and low amounts of neutral lipids. Using linear regression, we demonstrated the existence of a significant relationship between seed size and the ratio of root/shoot where the largest seeds invested a greater amount of resources for shoot growth. The relationship between germination speed and non-reducing sugar content was also significant, so these compounds is related to the maintenance of physiological seed quality. These results confirm some relationships discussed in the literature for cultivated species, but can be applied to the species native to the Caatinga
Resumo:
This work studies two methods for drying sunflower grains grown in the western region of Rio Grande do Norte, in the premises of the Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte - IFRN - Campus Apodi. This initiative was made because of the harvested grain during the harvest, being stored in sheds without any control of temperature, humidity etc. Therewith, many physical, chemical and physiological characteristics are compromised and grains lose much quality for oil production as their germination power. Taking into account that most of the stored grain is used for replanting, the studied methods include drying of grains in a thin layer using an oven with air circulation (fixed bed) and drying in a spouted bed. It was studied the drying of grains in natura, i.e., newly harvested. The fixed bed drying was carried out at temperatures of 40, 50, 60 and 70°C. Experiments in spouted bed were performed based on an experimental design, 2² + 3, with three replications at the central point, where the independent variables were grains load (1500, 2000 and 2500 g) and the temperature of the inlet air (70, 80, and 90 °C), obtaining the drying and desorption equilibrium isotherms. Previously, the characteristic curves of the bed were obtained. Both in the fixed bed as in the spouted bed, drying and desorption curves were obtained by weighing the grains throughout the experiments and measurements of water activity, respectively. The grains drying in the spouted bed showed good results with significant reduction of processing time. The models of FICK and PAGE were fitted to the experimental data, models which will represent the drying of grains both in the fixed bed as in the spouted bed. The desorption curves showed no influence of the processing temperature in the hygroscopic characteristics of the grains. The models of GAB, OSWIN and LUIKOV could well represent the desorption isotherms
Resumo:
In northeastern semiarid, seasonality on precipitation temporal distribution, high intensity storm events and inadequate management of native vegetation can promote soil erosion. Vegetation removal causes soil surface exposure, reduces soil water storage capacity and can be the source degradation processes. In this context, this approach aims to analyze water and soil erosion processes on a 250 m2 undisturbed experimental plot with native vegetation, slope 2.5% by using 2006 and 2007 monitoring data. The site was instrumented to monitor rainfall, overland flow runoff and erosion by using a 5 m³ tank downstream the plot. Soil erosion monitoring was made by transported sediment and organic matter collection after each event. Field infiltration experiments were made at 16 points randomly distributed within the plot area by using a constant head infiltrometer during drought and rainy seasons, respectively. Infiltration data revealed high spatial and temporal variability. It was observed that during the beginning of the rainy period, 77% of the events showed runoff coefficient less than 0.05. As the rainy season began, soil water increase produced annual species germination. High intensity storms resulted in runoff coefficients varying between 0.33 and 0.42. Once the annual species was established, it was observed that approximately 39% of the events produced no runoff, which reflects an increase on soil water retention capacity caused by the vegetation. A gradual runoff reduction during the rainy season emphasizes the effect of vegetative density increase. Soil erosion observed data allowed to fit an empirical relationship involving soil loss and precipitation height, which was used to analyze the plot installation impact on soil erosion. Observed soil loss in 2006 and 2007 was 230 Kg/ha and 54 Kg/ha, respectively
Resumo:
Hybrids among transgenic plants and related species are expected to occur if they are sympatric and when there are not crossing barriers; as is the case, in Brazil, of cry1Ac transgenic cotton and Gossypium barbadense. This species has been maintained as dooryard plants, and should be preserved as a genetic resource. Hybrids were evaluated about traits related to fitness, leading to infer about its chances of survivor and selection. A barbadense genotype collected at the state of Mato Grosso was outcrossed to the variety DP 404, containing the gene cry1Ac, and to the isoline DP 404. All the F1 individuals and 122 among 170 F2 individuals expressed the toxin, and presented levels of resistance to pink bollworm (Pectinophora gossypiella) and cotton leafworm (Alabama argillacea) equivalent to the transgenic parent and superior to the isoline, barbadense or non transgenic hybrids. The percentage of germination and number of days to germinate did not differ among genotypes. Anthesis of the first flower and opening of the first cotton boll occurred earlier for herbaceous cotton and F1 hybrids than F2 population in average; all the populations presented a number of days to flower and opening of the first boll smaller then barbadense. The highest plants were barbadenses, and herbaceus the smallest, with F1 and F2 populations presenting intermediary heights. The number of seeds per plants were superior for F1 hybrids an herbaceous cotton, F2 populations were in average intermediary; the barbadense genotype produced the smallest number of seeds per plant. Pink bollworm, mainly, and also cotton leafworm, are important barbadense pests, so the transgene positive effect could favor the selection of hybrids, and hence G. hirsutum genome, against the maintenance of pure G. barbadense genome. The selection may be influenced by the plant uses: the smaller size of hybrids when compared to the barbadense may lead them to be differentiated from these parents to which medicinal properties are attributed; on the other hand, the greater boll production may favor hybrids maintenance with the purpose of producing lamp wicks, or use as an ornamental or swab
Resumo:
The gray mold, causal organism Amphobotrys ricini, is one of the major diseases of castor bean. Difficulties in managing plant disease arises form the limited understanding of the genetic structure of A. ricini, their complexity and variability make it difficult to control. Genetic structure can be used to infer the relative impact of different forces that influence the evolution of pathogen populations, that allow to predict the potencial for pathogen populations to envolve in agricultural ecosystems. Growers protect their crop by applying fungicides, but there aren t fungicides to provide significant control of gray mold of castor bean. The objectives of this work were use RAPD to determine the genetic structure of A. ricini subpopulations in Paraíba and assay the sensitivity of A. ricini isolates to azoxystrobin and carbendazim. To determine the genetic structure of A. ricini subpopulations in Paraíba, 23 isolates were colleted from two different geographic location (subpopulation). These isolates were analysed by RAPD using 22 random decamer primers, purchased from OPERON, produced a total of 80 markers polimorphics. The resulting matrixes were analysed using PopGene version 1.32. Sensitivity to azoxystrobin and carbendazim of 30 isolates, colleted form Paraíba and Alagoas, was estimated based on spore germination and colony growth inhibition. The stock solutions were added toV8 medium after sterilization to produce final concentrations of 0, 0.01, 0.1, 1, 10, and 100 µg/ml of carbendazim and 0, 0.001, 0.01, 0.1, 1, and 10 µg/ml of azoxystrobin. All statistical analyses were performed using SAS to estimate the dose that inhibited fungal growth by 50% (ED50 values). The genetic diversity within subpopulations (Hs=0,271) accounted for 92% of the total genetic diversity (Ht=0,293), while genetic diversity between subpopulations (Gst = 0,075) represented only 7,5%. The estimated number of migrants per generation (NM ) was 6,15. Nei s average gene identity across 80 RAPD loci was 0,9468. Individual ED50 values, for the 30 isolates screened for their sensitivity to azoxystrobin, ranged From a maximum of 0,168 µg/ml to a minimum of 0,0036 µg/ml. The ED50 values for carbendazim varied within the range of 0,026 to 0,316 µg/ml
Resumo:
The germination of cotton seeds and the seedlings emergency are generally delayed and reduced by the salinity. Although the cotton is considered a tolerant culture, it can suffer substantial reductions in regarding its growth and production when exposed to salinity condition. The aims of this study went evaluate the effect of the saline stress in the germination phase to four cotton genotypes (BRS Rubi, BRS Safira, BRS 201 and CNPA 187 8H), using different osmotic potentials generated with increment of sodium chloride (NaCl). The saline stress was simulated using NaCl aqueous solutions in the potentials: 0.0 (Control); -0.2; -0.4; -0.6; -0.8 and -1.0 MPa. The treatments were monitored by means of tests for analysis of seeds, germination, first counting, speed germination index, length of shoot, radicle length, dry weigth of embrionic axis and shoot/radicle ratio. The tests for germination, first counting and index of germination speed were accomplished using 50 seeds for repetition and for the study of length of shoot, radicle length, dry weigth of embrionic axis and shoot/radicle ratio were used 20 seeds by repetition. For both tests four repetitions were accomplished by genotype for each one of the potentials. The seeds of each repetition were involved in papers Germitest humidified with NaCl solution corresponding to the potential. The repetitions of both tests were maintained in a germinator with saturated humidity. The analysis were initiate four days after the induction of the saline stress. The evaluations of the first three variables analyzed were accomplished daily; the seeds were remove and counted when its germinated. For the length tests just the repetitions corresponding to the potential of NaCl 0,0 MPa were analysis 4 days after the beginning of the induction of the saline stress. The analysis of the repetitions of the potentials -0,2 and -0,4 and of the potentials -0,6, -0,8 and -1,0 MPa they were accomplished with 12 and 20 days, respectively. For accomplishment of the analisis of this test the shoot of the 20 plantules of each repetition was separate from the radicle and both parts were measured. The statistical analyses were performed using the GENMOD and GLM procedures of the SAS. For the variable germination, the cultivates CNPA 187 8H and BRS Safira stood out for the potential -0.8 MPa, with averages of 89% and 81%, respectively. The test of speed germination index to cultivate BRS Safira presented the largest averages for the two higher saline potentials. It was observed that the increase of the saline potential reduces the germination percentage and speed germination index. For each day of evaluation it was verified that the increase of the saline potential causes a reduction of the length both of the shoot and of the radicle. The radicle tends to grow more than the shoot until the potential -0,4 MPa
Resumo:
The northeastern semiarid is a region that presents a serious picture stagnation or slowness of the economic growth, beyond the presence of social pointers below of the averages national and regional. The half-dryness conditions become the improper region for many agricultural cultures, what it affects the local populations directly, as well as the economy that is based mainly on agriculture. Cnidoscolus quercifolius Pohl, popularly know as favelone is a native species of the semiarid region that withholds great potential for the development of the region in virtue of its multiple uses. Being an oleaginous, its production in familiar farmings makes with that biodiesel either for the misery an important alternative eradication for the possibility of occupation of enormous contingents of people. The present study it aims at to evaluate the germination of the faveleira without thorns under conditions of water and saline stresses, main stresses which the vegetal species of the semiarid one are submitted; beyond verifying the acceptance of the species for agriculturists of a cooperative in the city of Apodi/RN. The methodology used for germination corresponds to using treatments with polyethylene glycol and sodium chloride to assess water and salt stress respectively, being held in rolo. O system approach used for the verification of acceptance of faveleira was the use of interview with farmers cooperative in the study area determined. In this direction it was verified that the faveleira is a resistant species the conditions of drought and salinity of the ground, factor of great relevance, since one is about a species with high added value, making possible the development for the semiarid region. It was verified that the agriculturists are favorable the introduction of the faveleira and reveal receptive the idea to cultivate a species with potential for production of biodiesel
Resumo:
The Caatinga biome has a high diversity of potential and their conservation constitutes one of the greatest challenges of Brazilian science. The sustainable management of the Caatinga emerges as an alternative that through the formation of systems agrossilvipastoris, enables the use of forest resources sustainably, ensuring their conservation, regeneration and recovery. In RN this technique has been developed mainly in settlements of Agrarian Reform, such as P. A. Moaci Lucena, and their impacts go beyond the environmental aspect and reverberate socially and economically on the quality of life of family farmers. Despite the efficiency of the Sustainable Management of the Caatinga in the conservation of native species, many forests species of this biome faces serious problems of propagation and for this reason have become vulnerable to extinction, as is the case of Mimosa caesalpiniifolia Benth . Thus , it is evident the need to use sustainable alternatives to overcome the difficulties of propagation of this species and enable their replacement in areas where their existence is threatened. The Plant Biotechnology is considered as a promising alternative in this sense, considering that by micropropagation enables the large-scale production of seedlings with high health genetics status. This work has the following objectives: evaluate the perception of family farmers of P. A. Moaci Lucena in relation to social, environmental and economic impacts of the Sustainable Management of the Caatinga and check the conditions of germination and in vitro propagation of Mimosa caesalpiniifolia Benth that enabling the production of seedlings of this specie on a large scale. To achieve the first objective, semi-structured interviews showed that in the perception of farmers PA Moaci Lucena, the Sustainable Management of the Caatinga was responsible for generating many social, environmental and economic impacts that affected directly in the improvement in the quality of life of the families of the Settlement Project Moaci Lucena. Have to achieve the second objective, were investigated the influence of different substrates and concentrations of growth regulator BAP in the germination and shoot induction in vitro of Mimosa caesalpiniifolia Benth. The vermiculite was presented as the most suitable substrate for germination of this species, because it provided a more rapid germination, higher growth rates and higher dry matter accumulation. Regarding micropropagation, the concentration of 17.76 μmol/L of BAP presented a more responsive in relation to multiplication rate and the number of shoots in M. caesalpiniifolia, thus constituting the most suitable concentration for the in vitro propagation of this specie