2 resultados para Germination -- Experiments
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
This work studies two methods for drying sunflower grains grown in the western region of Rio Grande do Norte, in the premises of the Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte - IFRN - Campus Apodi. This initiative was made because of the harvested grain during the harvest, being stored in sheds without any control of temperature, humidity etc. Therewith, many physical, chemical and physiological characteristics are compromised and grains lose much quality for oil production as their germination power. Taking into account that most of the stored grain is used for replanting, the studied methods include drying of grains in a thin layer using an oven with air circulation (fixed bed) and drying in a spouted bed. It was studied the drying of grains in natura, i.e., newly harvested. The fixed bed drying was carried out at temperatures of 40, 50, 60 and 70°C. Experiments in spouted bed were performed based on an experimental design, 2² + 3, with three replications at the central point, where the independent variables were grains load (1500, 2000 and 2500 g) and the temperature of the inlet air (70, 80, and 90 °C), obtaining the drying and desorption equilibrium isotherms. Previously, the characteristic curves of the bed were obtained. Both in the fixed bed as in the spouted bed, drying and desorption curves were obtained by weighing the grains throughout the experiments and measurements of water activity, respectively. The grains drying in the spouted bed showed good results with significant reduction of processing time. The models of FICK and PAGE were fitted to the experimental data, models which will represent the drying of grains both in the fixed bed as in the spouted bed. The desorption curves showed no influence of the processing temperature in the hygroscopic characteristics of the grains. The models of GAB, OSWIN and LUIKOV could well represent the desorption isotherms
Resumo:
In northeastern semiarid, seasonality on precipitation temporal distribution, high intensity storm events and inadequate management of native vegetation can promote soil erosion. Vegetation removal causes soil surface exposure, reduces soil water storage capacity and can be the source degradation processes. In this context, this approach aims to analyze water and soil erosion processes on a 250 m2 undisturbed experimental plot with native vegetation, slope 2.5% by using 2006 and 2007 monitoring data. The site was instrumented to monitor rainfall, overland flow runoff and erosion by using a 5 m³ tank downstream the plot. Soil erosion monitoring was made by transported sediment and organic matter collection after each event. Field infiltration experiments were made at 16 points randomly distributed within the plot area by using a constant head infiltrometer during drought and rainy seasons, respectively. Infiltration data revealed high spatial and temporal variability. It was observed that during the beginning of the rainy period, 77% of the events showed runoff coefficient less than 0.05. As the rainy season began, soil water increase produced annual species germination. High intensity storms resulted in runoff coefficients varying between 0.33 and 0.42. Once the annual species was established, it was observed that approximately 39% of the events produced no runoff, which reflects an increase on soil water retention capacity caused by the vegetation. A gradual runoff reduction during the rainy season emphasizes the effect of vegetative density increase. Soil erosion observed data allowed to fit an empirical relationship involving soil loss and precipitation height, which was used to analyze the plot installation impact on soil erosion. Observed soil loss in 2006 and 2007 was 230 Kg/ha and 54 Kg/ha, respectively