4 resultados para Geometrical concepts
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
This thesis represents a didactic research linked to the Post-graduation Programme in Education of the Universidade Federal do Rio Grande do Norte which aimed to approach the construction of the geometrical concepts of Volume of the Rectangular Parallelepiped, Area and Perimeter of the Rectangle adding a study of the Area of the Circle. The research was developed along with students from the 6th level of the Elementary School, in a public school in Natal/RN. The pedagogical intervention was made up of three moments: application of a diagnostic evaluation, instrument that enabled the creation of the teaching module by showing the level of the geometry knowledge of the students; introduction of a Teaching Module by Activities aiming to propose a reflexive didactic routing directed to the conceptual construction because we believed that such an approach would favor the consolidation of the learning process by becoming significant to the apprentice, and the accomplishment of a Final Evaluation through which we established a comparison of the results obtained before and after the teaching intervention. The data gathered were analyzed qualitatively by means of a study of understanding categories of mathematical concepts, in addition to using descriptive statistics under the quantitative aspect. Based on the theory of Richard Skemp, about categorization of mathematical knowledge, in the levels of Relational and Instrumental Understanding were achieved in contextual situations and varied proportions, thus enabling a contribution in the learning of the geometrical concepts studied along with the students who took part in the research. We believe that this work may contribute with reflections about the learning processes, a concern which remained during all the stages of the research, and also that the technical competence along with the knowledge about the constructivist theory will condition the implementation of a new dynamics to the teaching and learning processes. We hope that the present research work may add some contribution to the teaching practice in the context of the teaching of Mathematics for the intermediate levels of the Elementary School
Resumo:
The present study provides a methodology that gives a predictive character the computer simulations based on detailed models of the geometry of a porous medium. We using the software FLUENT to investigate the flow of a viscous Newtonian fluid through a random fractal medium which simplifies a two-dimensional disordered porous medium representing a petroleum reservoir. This fractal model is formed by obstacles of various sizes, whose size distribution function follows a power law where exponent is defined as the fractal dimension of fractionation Dff of the model characterizing the process of fragmentation these obstacles. They are randomly disposed in a rectangular channel. The modeling process incorporates modern concepts, scaling laws, to analyze the influence of heterogeneity found in the fields of the porosity and of the permeability in such a way as to characterize the medium in terms of their fractal properties. This procedure allows numerically analyze the measurements of permeability k and the drag coefficient Cd proposed relationships, like power law, for these properties on various modeling schemes. The purpose of this research is to study the variability provided by these heterogeneities where the velocity field and other details of viscous fluid dynamics are obtained by solving numerically the continuity and Navier-Stokes equations at pore level and observe how the fractal dimension of fractionation of the model can affect their hydrodynamic properties. This study were considered two classes of models, models with constant porosity, MPC, and models with varying porosity, MPV. The results have allowed us to find numerical relationship between the permeability, drag coefficient and the fractal dimension of fractionation of the medium. Based on these numerical results we have proposed scaling relations and algebraic expressions involving the relevant parameters of the phenomenon. In this study analytical equations were determined for Dff depending on the geometrical parameters of the models. We also found a relation between the permeability and the drag coefficient which is inversely proportional to one another. As for the difference in behavior it is most striking in the classes of models MPV. That is, the fact that the porosity vary in these models is an additional factor that plays a significant role in flow analysis. Finally, the results proved satisfactory and consistent, which demonstrates the effectiveness of the referred methodology for all applications analyzed in this study.
Resumo:
This thesis aims to present a study of the Fibonacci sequence, initiated from a simple problem of rabbits breeding and the Golden Ratio, which originated from a geometrical construction, for applications in basic education. The main idea of the thesis is to present historical records of the occurrence of these concepts in nature and science and their influence on social, cultural and scientific environments. Also, it will be presented the identification and the characterization of the basic properties of these concepts and howthe connection between them occurs,and mainly, their intriguing consequences. It is also shown some activities emphasizing geometric constructions, links to other mathematics areas, curiosities related to these concepts and the analysis of questions present in vestibular (SAT-Scholastic Aptitude Test) and Enem(national high school Exam) in order to show the importance of these themes in basic education, constituting an excellent opportunity to awaken the students to new points of view in the field of science and life, from the presented subject and to promote new ways of thinking mathematics as a transformative science of society.
Resumo:
The present study provides a methodology that gives a predictive character the computer simulations based on detailed models of the geometry of a porous medium. We using the software FLUENT to investigate the flow of a viscous Newtonian fluid through a random fractal medium which simplifies a two-dimensional disordered porous medium representing a petroleum reservoir. This fractal model is formed by obstacles of various sizes, whose size distribution function follows a power law where exponent is defined as the fractal dimension of fractionation Dff of the model characterizing the process of fragmentation these obstacles. They are randomly disposed in a rectangular channel. The modeling process incorporates modern concepts, scaling laws, to analyze the influence of heterogeneity found in the fields of the porosity and of the permeability in such a way as to characterize the medium in terms of their fractal properties. This procedure allows numerically analyze the measurements of permeability k and the drag coefficient Cd proposed relationships, like power law, for these properties on various modeling schemes. The purpose of this research is to study the variability provided by these heterogeneities where the velocity field and other details of viscous fluid dynamics are obtained by solving numerically the continuity and Navier-Stokes equations at pore level and observe how the fractal dimension of fractionation of the model can affect their hydrodynamic properties. This study were considered two classes of models, models with constant porosity, MPC, and models with varying porosity, MPV. The results have allowed us to find numerical relationship between the permeability, drag coefficient and the fractal dimension of fractionation of the medium. Based on these numerical results we have proposed scaling relations and algebraic expressions involving the relevant parameters of the phenomenon. In this study analytical equations were determined for Dff depending on the geometrical parameters of the models. We also found a relation between the permeability and the drag coefficient which is inversely proportional to one another. As for the difference in behavior it is most striking in the classes of models MPV. That is, the fact that the porosity vary in these models is an additional factor that plays a significant role in flow analysis. Finally, the results proved satisfactory and consistent, which demonstrates the effectiveness of the referred methodology for all applications analyzed in this study.