4 resultados para Generalized estimating equations

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sizing of nursing human resources is an essential management tool to meet the needs of the patients and the institution. Regarding to the Intensive Care Unit, where the most critical patients are treated and the most advanced life-support equipments are used, requiring a high number of skilled workers, the use of specific indicators to measure the workload of the team becomes necessary. The Nursing Activities Score is a validated instrument for measuring nursing workload in the Intensive Care Unit that has demonstrated effectiveness. It is a cross-sectional study with the primary objective of assessing the workload of nursing staff in an adult Intensive Care Unit through the application of the Nursing Activities Score. The study was conducted in a private hospital specialized in the treatment of patients with cancer, which is located in the city of Natal (Rio Grande do Norte – Brazil). The study was approved by the Research Ethics Committee of the hospital (Protocol number 558.799; CAAE 24966013.7.0000.5293). For data collection, a form of sociodemographic characteristics of the patients was used; the Nursing Activities Score was used to identify the workload of nursing staff; and the instrument of Perroca, which classifies patients and provides data related to the their need for nursing care, was also used. The collected data were analyzed using a statistical package. The categorical variables were described by absolute and relative frequency, while the number by median and interquartile range. Considering the inferential approach, the Spearman test, the Wald chi-square, Kruskal Wallis and Mann-Whitney test were used. The statistically significant variables were those with p values <0.05. The evaluation of the overall averages of NAS, considering the first 15 days of hospitalization, was performed by the analysis of Generalized Estimating Equations (GEE), with adjust for the variable length of hospitalization. The sample consisted of 40 patients, in the period of June to August 2014. The results showed a mean age of 62,1 years (±23,4) with a female predominance (57,5%). The most frequent type of treatment was clinical (60,0%), observing an average stay of 6,9 days (±6,5). Considering the origin, most patients (35%) came from the Surgical Center. There was a mortality rate of 27,5%. 277 measures of NAS score and Perroca were performed, and the averages of 69,8% (±24,1) and 22,7% (±4.2) were obtained, respectively. There was an association between clinical outcome and value of the Nursing Activities Score in 24 hours (p <0.001), and between the degree of dependency of patients and nursing workload (rp 0,653, p<0,001). The achieved workload of the nursing staff, in the analyzed period, was presented high, showing that hospitalized patients required a high demand for care. These findings create subsidies for sizing of staff and allocation of human resources in the sector, in order to achieve greater safety and patient satisfaction as a result of intensive care, as well as an environment conducive to quality of life for the professionals

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate and air pollution, among others, are responsible factors for increase of health vulnerability of the populations that live in urban centers. Climate changes combined with high concentrations of atmospheric pollutants are usually associated with respiratory and cardiovascular diseases. In this sense, the main objective of this research is to model in different ways the climate and health relation, specifically for the children and elderly population which live in São Paulo. Therefore, data of meteorological variables, air pollutants, hospitalizations and deaths from respiratory and cardiovascular diseases a in 11-year period (2000-2010) were used. By using modeling via generalized estimating equations, the relative risk was obtained. By dynamic regression, it was possible to predict the number of deaths through the atmospheric variables and the betabinomial-poisson model was able to estimate the number of deaths and simulate scenarios. The results showed that the risk of hospitalizations due to asthma increases approximately twice for children exposed to high concentrations of particulate matter than children who are not exposed. The risk of death by acute myocardial infarction in elderly increase in 3%, 6%, 4% and 9% due to high concentrations CO, SO2, O3 and PM10, respectively. Regarding the dynamic regression modeling, the results showed that deaths by respiratory diseases can be predicted consistently. The beta-binomial-poisson model was able to reproduce an average number of deaths by heart insufficiency. In the region of Santo Amaro the observed number was 2.462 and the simulated was 2.508, in the Sé region 4.308 were observed and 4.426 simulated, which allowed for the generation of scenarios that may be used as a parameter for decision. Making with these results, it is possible to contribute for methodologies that can improve the understanding of the relation between climate and health and proved support to managers in environmental planning and public health policies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this study was to evaluate the influence of milking procedures on the levels of total bacterial count (TBC) in bovine milk. In the first study the influences of procedures for hygienic milking, cleaning of milking equipment and milk cooling tanks on the TBC levels were evaluated. Four bulk samples of milk were collected from each tank in eight properties for TBC analysis, employing the flow cytometry method. A questionnaire was applied in each property to assess the current situation of milking procedures on each production system that took part on this research, followed by training of employees in good agricultural practices in the production of milk and monitoring of the TBC measurements. The methodology for analysis of longitudinal data was considered, focusing on random effects models. The results showed that the handling procedures for milking and the cleanliness of the cooling tank contributed to a further reduction in the levels of TBC raw milk cooling tanks. The second study aimed to describe the percentage of the properties that comply with the Normative Instruction Nº 51 (Brazil s IN 51) with regard to total bacterial count (TBC) in bovine milk. The study was conducted from January 2010 to July 2011. Milk samples were collected from the eight properties selected for TBC analysis by the flow cytometry method. Again, on each property a questionnaire was applied to assess the current situation of milking procedures on each production system that took part on this research, followed by training of employees in good agricultural practices in the production of milk and monitoring of the TBC measurements. The methodology of marginal models based on Generalized Estimate Equations (GEEs) was followed in the statistical analysis. The results showed that the handling procedures of the milking and the cleanliness of the cooling tanks contributed to a considerable percentage of the properties that reached the limits of TBC established by IN 51

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this dissertation, after a brief review on the Einstein s General Relativity Theory and its application to the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmological models, we present and discuss the alternative theories of gravity dubbed f(R) gravity. These theories come about when one substitute in the Einstein-Hilbert action the Ricci curvature R by some well behaved nonlinear function f(R). They provide an alternative way to explain the current cosmic acceleration with no need of invoking neither a dark energy component, nor the existence of extra spatial dimensions. In dealing with f(R) gravity, two different variational approaches may be followed, namely the metric and the Palatini formalisms, which lead to very different equations of motion. We briefly describe the metric formalism and then concentrate on the Palatini variational approach to the gravity action. We make a systematic and detailed derivation of the field equations for Palatini f(R) gravity, which generalize the Einsteins equations of General Relativity, and obtain also the generalized Friedmann equations, which can be used for cosmological tests. As an example, using recent compilations of type Ia Supernovae observations, we show how the f(R) = R − fi/Rn class of gravity theories explain the recent observed acceleration of the universe by placing reasonable constraints on the free parameters fi and n. We also examine the question as to whether Palatini f(R) gravity theories permit space-times in which causality, a fundamental issue in any physical theory [22], is violated. As is well known, in General Relativity there are solutions to the viii field equations that have causal anomalies in the form of closed time-like curves, the renowned Gödel model being the best known example of such a solution. Here we show that every perfect-fluid Gödel-type solution of Palatini f(R) gravity with density and pressure p that satisfy the weak energy condition + p 0 is necessarily isometric to the Gödel geometry, demonstrating, therefore, that these theories present causal anomalies in the form of closed time-like curves. This result extends a theorem on Gödel-type models to the framework of Palatini f(R) gravity theory. We derive an expression for a critical radius rc (beyond which causality is violated) for an arbitrary Palatini f(R) theory. The expression makes apparent that the violation of causality depends on the form of f(R) and on the matter content components. We concretely examine the Gödel-type perfect-fluid solutions in the f(R) = R−fi/Rn class of Palatini gravity theories, and show that for positive matter density and for fi and n in the range permitted by the observations, these theories do not admit the Gödel geometry as a perfect-fluid solution of its field equations. In this sense, f(R) gravity theory remedies the causal pathology in the form of closed timelike curves which is allowed in General Relativity. We also examine the violation of causality of Gödel-type by considering a single scalar field as the matter content. For this source, we show that Palatini f(R) gravity gives rise to a unique Gödeltype solution with no violation of causality. Finally, we show that by combining a perfect fluid plus a scalar field as sources of Gödel-type geometries, we obtain both solutions in the form of closed time-like curves, as well as solutions with no violation of causality