5 resultados para Generalized Fibonacci sequence
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
In this paper we investigate the spectra of band structures and transmittance in magnonic quasicrystals that exhibit the so-called deterministic disorders, specifically, magnetic multilayer systems, which are built obeying to the generalized Fibonacci (only golden mean (GM), silver mean (SM), bronze mean (BM), copper mean (CM) and nickel mean (NM) cases) and k-component Fibonacci substitutional sequences. The theoretical model is based on the Heisenberg Hamiltonian in the exchange regime, together with the powerful transfer matrix method, and taking into account the RPA approximation. The magnetic materials considered are simple cubic ferromagnets. Our main interest in this study is to investigate the effects of quasiperiodicity on the physical properties of the systems mentioned by analyzing the behavior of spin wave propagation through the dispersion and transmission spectra of these structures. Among of these results we detach: (i) the fragmentation of the bulk bands, which in the limit of high generations, become a Cantor set, and the presence of the mig-gap frequency in the spin waves transmission, for generalized Fibonacci sequence, and (ii) the strong dependence of the magnonic band gap with respect to the parameters k, which determines the amount of different magnetic materials are present in quasicrystal, and n, which is the generation number of the sequence k-component Fibonacci. In this last case, we have verified that the system presents a magnonic band gap, whose width and frequency region can be controlled by varying k and n. In the exchange regime, the spin waves propagate with frequency of the order of a few tens of terahertz (THz). Therefore, from a experimental and technological point of view, the magnonic quasicrystals can be used as carriers or processors of informations, and the magnon (the quantum spin wave) is responsible for this transport and processing
Resumo:
This thesis aims to present a study of the Fibonacci sequence, initiated from a simple problem of rabbits breeding and the Golden Ratio, which originated from a geometrical construction, for applications in basic education. The main idea of the thesis is to present historical records of the occurrence of these concepts in nature and science and their influence on social, cultural and scientific environments. Also, it will be presented the identification and the characterization of the basic properties of these concepts and howthe connection between them occurs,and mainly, their intriguing consequences. It is also shown some activities emphasizing geometric constructions, links to other mathematics areas, curiosities related to these concepts and the analysis of questions present in vestibular (SAT-Scholastic Aptitude Test) and Enem(national high school Exam) in order to show the importance of these themes in basic education, constituting an excellent opportunity to awaken the students to new points of view in the field of science and life, from the presented subject and to promote new ways of thinking mathematics as a transformative science of society.
Resumo:
This dissertation analyses the influence of sugar-phosphate structure in the electronic transport in the double stretch DNA molecule, with the sequence of the base pairs modeled by two types of quasi-periodic sequences: Rudin-Shapiro and Fibonacci. For the sequences, the density of state was calculated and it was compared with the density of state of a piece of human DNA Ch22. After, the electronic transmittance was investigated. In both situations, the Hamiltonians are different. On the analysis of density of state, it was employed the Dyson equation. On the transmittance, the time independent Schrödinger equation was used. In both cases, the tight-binding model was applied. The density of states obtained through Rudin-Shapiro sequence reveal to be similar to the density of state for the Ch22. And for transmittance only until the fifth generation of the Fibonacci sequence was acquired. We have considered long range correlations in both transport mechanism
Resumo:
In this thesis, we investigated the magnonic and photonic structures that exhibit the so-called deterministic disorder. Speci cally, we studied the effects of the quasiperiodicity, associated with an internal structural symmetry, called mirror symmetry, on the spectra of photonics and magnonics multilayer. The quasiperiodicity is introduced when stacked layers following the so-called substitutional sequences. The three sequences used here were the Fibonacci sequence, Thue-Morse and double-period, all with mirror symmetry. Aiming to study the propagation of light waves in multilayer photonic, and spin waves propagation in multilayer magnonic, we use a theoretical model based on transfer matrix treatment. For the propagation of light waves, we present numerical results that show that the quasiperiodicity associated with a mirror symmetry greatly increases the intensity of transmission and the transmission spectra exhibit a pro le self-similar. The return map plotted for this system show that the presence of internal symmetry does not alter the pattern of Fibonacci maps when compared with the case without symmetry. But when comparing the maps of Thue-Morse and double-time sequences with their case without the symmetry mirror, is evident the change in the pro le of the maps. For magnetic multilayers, we work with two di erent systems, multilayer composed of a metamagnetic material and a non-magnetic material, and multilayers composed of two cubic Heisenberg ferromagnets. In the rst case, our calculations are carried out in the magnetostatic regime and calculate the dispersion relation of spin waves for the metamgnetic material considered FeBr2. We show the e ect of mirror symmetry in the spectra of spin waves, and made the analysis of the location of bulk bands and the scaling laws between the full width of the bands allowed and the number of layers of unit cell. Finally, we calculate the transmission spectra of spin waves in quasiperiodic multilayers consisting of Heisenberg ferromagnets. The transmission spectra exhibit self-similar patterns, with regions of scaling well-de ned in frequency and the return maps indicates only dependence of the particular sequence used in the construction of the multilayer
Resumo:
We address the generalization of thermodynamic quantity q-deformed by q-algebra that describes a general algebra for bosons and fermions . The motivation for our study stems from an interest to strengthen our initial ideas, and a possible experimental application. On our journey, we met a generalization of the recently proposed formalism of the q-calculus, which is the application of a generalized sequence described by two parameters deformation positive real independent and q1 and q2, known for Fibonacci oscillators . We apply the wellknown problem of Landau diamagnetism immersed in a space D-dimensional, which still generates good discussions by its nature, and dependence with the number of dimensions D, enables us future extend its application to systems extra-dimensional, such as Modern Cosmology, Particle Physics and String Theory. We compare our results with some experimentally obtained performing major equity. We also use the formalism of the oscillators to Einstein and Debye solid, strengthening the interpretation of the q-deformation acting as a factor of disturbance or impurity in a given system, modifying the properties of the same. Our results show that the insertion of two parameters of disorder, allowed a wider range of adjustment , i.e., enabling change only the desired property, e.g., the thermal conductivity of a same element without the waste essence