5 resultados para GPS,Focal mechanisms,Wavelets,Declustering

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents and discusses the results of the various seismic areas in the State of Pernambuco, with the aim of having a vision of regional seismicity and its causes. To the papers published in journals were added two new original works submitted to international journals, dealing with seismic areas located in the counties of São Caetano, Cupira, and Agrestina. All seismic areas mentioned in this thesis are located on the Pernambuco Lineament and its surroundings (both in branches or single faults within 40 km of it). The Pernambuco Lineament is a Neoproterozoic shear zone of continental-scale that deformed the Borborema Province, and presents as branches, shear zones with NE-SW direction. The new submitted papers are from the analysis of data collected by three local networks of stations that operated in the following areas: network SO07 (seismicity in the district of Santa Luzia - São Caetano, 2007), network BM10 (data from seismic areas of Serra Verde ( Cupira) and Barra do Chata (Agrestina), in 2010), network SO10 (seismicity near the urban center of São Caetano in 2010). These data were used for determining the hypocenters and focal mechanisms in order to discuss the relationship between the seismicity and geological features of the area. The new mechanisms obtained, as well as the previously published allowed the determination of the direction of the average stress in the region. The direction of stress in the region involving the various seismic areas, now or previously studied, is quite stable and approximate EW direction (SHmax). The correlation between seismicity and geological features is observed on the lineament and north of it. In the south (Cupira and Agrestina), in seismic areas nearby shear zones NE-SW, there is no correlation and seismogenic EW normal faults are active and its motion is compatible with regional stresses. It is probable that these active faults are more recent than the Neoproterozoic, probably of the Cretaceous period, when the last great movement of the Pernambuco Lineament occurred

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Tucunduba Dam, is west of Fortaleza, Ceará State. The seismic monitoring of the area, with an analogical station and seven digital stations, had beginning on June 11, 1997. The digital stations, operated from June to November 1997. The data collected in the period of digital monitoring was analyzed for determination of hypocenters, focal mechanisms, and shear-wave anisotropy analysis. For determination of hypocenters, it was possible to find an active zone of nearly 1 km in length, with depth between 4.5 and 5.2 km. A 60AZ/88SE fault plane was determined using the least-squares method and hypocenters of a selected set of 16 earthquakes recorded. Focal mechanisms were determined, in the composite fault plane solution, a strike-slip fault, trending nearly E-W, was found. Single fault plane solutions were obteined to some earthquakes presented mean values of 65 (azimuth), and 80 (dip). Shear-wave anisotropy was found in the data. Polarization directions and travel time delays, between S spliting waves, were determined. It was not possible to obtain any conclusion on the cause of the observed anisotropy. It is not clear if there is correlation between seismicity and mapped faults in the area, although the directions obtained starting from the hipocentros and focal mechanism are they are consistent with directions, observed in the area, photo, topographic and fractures directions observed in the area

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The town of Sobral is located at the northwest part of the Ceará State, 250 km away from its capital, Fortaleza. In January 2008, an intense seismic activity began near Sobral with one event with magnitude 4,2mb on May 21. Since the start of its seismic activity, all events were recorded by the SBBR station (located on EMBRAPA Caprinos Farm), which operates in the region since August 2007. After this event, monitoring the seismic activity was carried out with the deployment of a local three component digital seismographic network, from June 5, 2008 until September 24. Initially, this network was composed of six seismographic stations. Later additional five stations were deployed until August 26 2008. This local network detected approximately 2,800 earthquakes. In this study we analyzed 581 earthquakes recorded by at least three stations for hypocentral and focal mechanism determination, and to contribute to a better explanation of the seismicity which in this region. To determine the hypocenters, we used a half-space model, with vP = 6,00 km/s and vP/vS = 1,71. From the hypocentral determination, it was revealed an active seismic zone with depth ranging between 1 and 8 km, 6 km long in E - W direction. The determination of fault planes and focal mechanism was obtained using the programs FPFIT and PLAN, which allowed comparison between their respective results in order to obtain more accurate results. A set of 24 earthquakes were selected to determine fault using PLAN planes and focal mechanisms using FPFIT. With the aid of detailed map of hypocenters this set, it was possible to identify three structures. Therefore, the set of 24 earthquakes were divided into three subsets. The type of mechanism was predominantly strike-slip with a dextral direction. Although the region has two tectonic structures near the site of the study area: the Café- Ipueiras Fault (normal fault) and the Sobral-Pedro II Lineament (dextral strike-slip fault) it was not possible to correlate the seismicity founded with those structures

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents new stress orientations and magnitudes from the Potiguar basin in the continental margin of Brazil. We analyzed breakout and drilled induced fractures derived from resistivity image logs run in ten oil wells. We also used direct Shmin measurements determined from hydraulic fractures and rock strength laboratory analysis. In addition, we compared these results with 19 earthquake focal mechanisms located in the crystalline basement. We observed that stress directions and magnitudes change across the basin and its basement. In the basin, the SHmax gradient of 20.0 MPa/km and the SHmax/Shmin ratio of 1.154 indicate a normal stress regime from 0.5 to 2.0 km, whereas the SHmax gradient of 24.5MPa/km and the SHmax/Shmin ratio of 1.396 indicate a strike slip stress regime from 2.5 to 4.0 km. The deeper strike-slip stress regime in the basin is similar to the regime in the basement at 1-12 km deep. This stress regime transition is consistent with an incipient tectonic inversion process in the basin. We also noted that the SHmax direction rotates from NW SE in the western part of the Potiguar basin to E W in its central and eastern part, following roughly the shoreline geometry. It indicates that local factors, as density contrast between continental and oceanic crust and sediment loading at the continental shelf influence the stress field. The concentration of fluid pressure in faults of the lowpermeability crystalline basement and its implications to establish a critically stressed fault regime in the basement is also discussed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inside the Borborema Province the Northwestern Ceará (NC) is one of the most seismic active regions. There are reports of an earthquake occurred in 1810 in the Granja town. On January, 2008 the seismic activity in NC has increased and it was deployed a seismographic network with 11 digital stations. In 2009, another earthquake sequence began and it was deployed another seismographic network in the Santana do Acaraú town with 6 stations. This thesis presents the results obtained by analyzing the data recorded in these two networks. The epicentral areas are located near the northeastern part of the Transbrasiliano Lineament, a shear zone with NE-SW-trending that cuts the study area. The hypocenters are located between 1km and 8km. The strike-slip focal mechanisms were found, which is predominant in the Borborema Province. An integration of seismological, geological and geophysical data was performed and it show that the seismogenic faults found are oriented in the same direction to the local brittle structures observed in field and magnetic lineaments. The SHmax (maximum compressional stress) direction in NC was estimated using an inversion of seven focal mechanisms. The horizontal maximum compression stress (σ1 = 300°) with orientation NW-SE and extension (σ3 = 210°) with NE-SW and σ2 vertical. These results are consistent with results of previous studies. The seismic activity recorded in NC is not related to a possible reactivation of the Transbrasiliano Lineament, by now.