9 resultados para GLUTATHIONE-PEROXIDASE
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Recently, it has been a increasing interest in the antioxidative role of natural products to aid the endogenous protective biological systems against the deleterious effects of oxygen (ROS) and nitrogen (RNS) reactive species. Many antioxidant compounds, naturally occurring from plant sources. Natural antioxidants can protect and prevent the human body from oxidative stress and retard the progress of many diseases in which free radical are involved. Several plants used in the folk medicine to treat certain disorders that are accompanied by inflammation and other pharmacological properties have been proved their attributed properties, such antioxidant activity. Turnera ulmifolia Linn. var. elegans (Turneraceae), frequently employed by population as a medicinal plant, demonstrated antioxidant activity by in vitro and in vivo assays, using its leaf hydroethanolic extract (10%) he in vitro DPPH radical-scanvenging activity showed a strong antioxidant activity (86.57% ± 0.14), similar to Carduus marianus and catequine effects. For the in vivo assays, adult female Wistar rats (n=48) with carbon tetrachloride hepatic injury induced (2,5mL/kg i.p.) were used, Six groups or rats were uses (n=8) [G1 = control (1,25 mL/kg i.p. vehicle); G2 = CCl4 (2,5 mL/kg i.p.); G3 = CCl4 + extract 7 days (500 mg/kg p.o.); G4 = CCl4 + Legalon® 7 days (50 mg/kg p.o.), G5 = CCl4 + extract 21 days (500 mg/kg p.o.) e G6 = CCl4 + Legalon® 21 days (50 mg/kg p.o.)]. The hepatic oxidative injury was evaluated through biochemical parameters [alanine amino transferase (ALT), aspartate amino transferase (AST)] histopathological study, while thiobarbituric acid reactive products (TBAR), glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) levels were used to evaluate proantioxidant parameters. The plant extract tested was found effective as hepatoprotective as evidenced by a decreasing in the ALT and AST activities (p<0.001) and TBAR (plasma, p<0.001 and liver, p<0.001). Levels of GSH (blood, p<0.001 and liver, p<0.001) and antioxidant enzymes [CAT erythrocyte (p<0.05) and hepatic (p<0.01); SOD erythrocyte (p<0.001) and hepatic (p<0.001); GPx erythrocyte (p<0.001) and hepatic (p<0.001)] were also significantly increased. Histopathological changes induced by CCl4 were significantly reduced by the extract treatment. The data obtained were comparable to that of Legalon®, a reference hepatoprotective drug. The results showed that T. ulmifolia leaf extract protects against CCl4 induced oxidative damage. Therefore, this effect must be associated to its antioxidant activity, attributed to the phenolic compounds, present in these extract, which can act as free radical scavengers
Resumo:
The aim of this study was to determine the effects of the use of rosuvastatin in patients with atherosclerosis, in relation to blood parameters of selenium and selenoproteins, and also observe possible changes in gene expression of selenoproteins in these patients. The sample consisted of 27 adult and elderly patients with a clinical diagnosis of coronary artery disease undergoing angioplasty, treated at Natal Hospital Center hospital, Natal, RN. Patients were treated with rosuvastatin 10 mg/day during four months. Anthropometric variables such as body mass index (BMI) and Waist circumference (WC) were measured before and after treatment, as well as lipid profile, blood glucose and liver enzymes (AST and ALT). The diet of the patients was also analyzed using 24-hour diet recall. We analyzed the concentrations of selenium in plasma and erythrocytes, and also the activity of Glutathione Peroxidase and gene expression by Real Time PCR of selenoproteins GPx1, SelP1 and SelN1. Patients had mean age of 61.0 ± 9.4 years, 59.3% were men and 40.7% were women. After four months of treatment there was significant reduction of CA and, according to BMI, most were overweight. The intake of macronutrients, cholesterol, polyunsaturated fatty acids, monounsaturated and saturated was adequate, but the energy and fiber intake was below the recommendations. Regarding the selenium intake was observed a high prevalence of inadequacy. As expected, after treatment with rosuvastatin, a significant reduction in total cholesterol, LDL and glucose, which was not observed for HDL. Selenium concentrations in plasma and erythrocytes showed no changes, keeping within the established cutoffs. We observed a significant increase in GPx enzyme activity and mRNA expression of GPX1 and SEPN1, but not for gene SEPP1. Thus, it was found that treatment with rosuvastatin did not reduce the expression of selenoproteins. More studies are needed to clarify the effects of rosuvastatin on gene expression of selenoproteins in patients with atherosclerosis
Resumo:
Post-menopause is a period of women s life cycle that is characterized by estrogen depletion and therefore increasing cardiovascular diseases, neurodegenerative disorders, urogenital atrophy, osteoporosis, hot flushes and sexual discomfort incidences. Estrogen is a hormone with comfirmed antioxidant action and its depletion is related to oxidative stress instalation and damaging various important biomolecules. Regular physical activity has been identified as a factor involved in reducing women s post-menopausal complications in addition to improving antioxidant defense by reducing the oxidative damage and consequently improving life s quality in this part of the population. This study aims to evaluate the influence of hypoestrogenism in antioxidant adaptation due to regular exercise, by determining reduced glutathione (GSH) and Thiobarbituric Acid Reactive Substances (SRAT) concentrations and antioxidant enzymes glutathione peroxidase (GPx), Superoxide Dismutase (SOD) and Catalase (CAT) activities in blood, brain and liver of rats. To achieve this goal we used 50 Wistar rats, weighing 180-250g which were divided into two groups, control - GC (25) and ooforectomized - GO (25). Each group was subdivided into five subgroups: Not-trained - S (5), Not-trained Acute Exercise - SEA (5), regular exercise 30 days - E30 (5), regular exercise 60 days - E60 (5) and regular exercise 90 days - E90 (5). Each of the three subgroups exercised regularly was subjected to acute exercise on the eve and the day of sacrifice to collect biological samples of blood, liver and brain and subsequent determination of SRAT concentration, GSH content and antioxidant enzymes GPx, SOD and CAT activities. The results indicated that the sedentary animals acutely exercised presented oxidative stress and regular physical activity led to antioxidant adaptation. In ooforectomized group the antioxidant adaptation seen in control animals showed to be impaired. Unlike the results from blood and liver, in brain there was a shield against oxidative damage originated by the exercise and that hypoestrogenism led to a loss of this natural antioxidant potential. Therefore, hypoestrogenism interferes negatively in antioxidant adaptation due to regular exercise
Resumo:
Studies report that the pathophysiological mechanism of diabetes complications is associated with increased production of Reactive Oxygen Species (ROS)-induced by hyperglycemia and changes in the capacity the antioxidant defense system. In this sense, the aim of this study was to evaluate changes in the capacity of antioxidant defense system, by evaluating antioxidant status, gene expression and polymorphisms in the genes of GPx1, SOD1 and SOD2 in children, adolescents and young adults with type 1 diabetes. We studied 101 individuals with type 1 diabetes (T1D) and 106 normoglycemic individuals (NG) aged between 6 and 20 years. Individuals with type 1 diabetes were evaluated as a whole group and subdivided according to glycemic control in DM1G good glycemic control and DM1P poor glycemic control. Glycemic and metabolic control was evaluate by serum glucose, glycated hemoglobin, triglycerides, total cholesterol and fractions (HDL and LDL). Renal function was assessed by measurement of serum urea and creatinine and albumin-to-creatinine ratio (ACR) in spot urine. Antioxidant status was evaluate by content of reduced glutathione (GSH) in whole blood and the activity of erythrocyte enzymes glutathione peroxidase (GPx) and superoxide dismutase (SOD). We also analyzed gene expression and gene polymorphisms of GPx1 (rs1050450), SOD1 (rs17881135) and SOD2 (rs4880) by the technique of real-time PCR (Taqman®). Most individuals with DM1 (70.3%) had poor glycemic control (glycated hemoglobin> 8%). Regarding the lipid profile, individuals with type 1 diabetes had significantly elevated total cholesterol (p <0.001) and LDL (p <0.000) compared to NG; for triglycerides only DM1NC group showed significant increase compared to NG. There was an increase in serum urea and RAC of individuals with DM1 compared to NG. Nine individuals with type 1 diabetes showed microalbuminuria (ACR> 30 mg / mg). There was a decrease in GSH content (p = 0.006) and increased erythrocyte GPx activity (p <0.001) and SOD (p <0.001) in DM1 group compared to NG. There was no significant difference in the expression of GPx1 (p = 0.305), SOD1 (.365) and SOD2 (0.385) between NG and DM1. The allele and genotype frequencies of the polymorphisms studied showed no statistically significant difference between the groups DM1 and NG. However, the GPx1 polymorphism showed the influence of erythrocyte enzyme activity. There was a decrease in GPx activity in individuals with type 1 diabetes who had a polymorphic variant T (p = 0.012). DM1 patients with the polymorphic variant G (AG + GG) for polymorphism of SOD2 (rs4880) showed an increase in the RAC (p <0.05). The combined data suggest that glucose control seems to be the predominant factor for the emergence of changes in lipid profile, renal function and antioxidant system, but the presence of the polymorphisms studied may partly contribute to the onset of complications
Resumo:
Alpha-lipoic acid (ALA) is a potent antioxidant with favourable anti-inflammatory, metabolic and endothelial effects, and has been widely investigated due to its potential against cardiovascular risk factors. This study aimed to evaluate the effect of oral ALA supplementation on oxidative stress biomarkers, inflammation and cardiovascular risk factors in patients with hypertension. This is a double-blind placebo-controlled randomized clinical trial, where the intervention was evaluated prospectively comparing results in both groups. The sample consisted of 64 hypertensive patients who were randomly distributed into ALA group (n = 32), receiving 600 mg / day ALA for twelve weeks and control group (n = 32), receiving placebo for the same period. The following parameters were evaluated before and after intervention: lipid peroxidation, content of reduced glutathione (GSH), enzymatic activities of glutathione peroxidase (GPx) and superoxide dismustase, ultrasensitive C-reactive protein (hs-CRP), triglycerides, total cholesterol and fractions, fasting glucose and anthropometric indicators. There was a statistically significant reduction (p <0.05) in serum concentrations of total cholesterol, very low density lipoprotein (VLDL), high density lipoprotein (HDL), triglycerides and blood glucose. There was a reduction in body weight and waist, abdominal and hip circumferences in the group that received ALA. In addition, there was a statistically significant increase (p <0.05) in the contents of reduced glutathione (GSH) and glutathione peroxidase (GPx) in the group receiving ALA. Oral administration of ALA appears to be a valuable adjuvant therapy, which may contribute to decrease the damage caused by oxidative stress and other risk factors associated with the atherosclerotic process
Resumo:
The correlation between the type 1 diabetes mellitus and oxidative stress have been described in several studies, however its underlying mechanisms are not fully elucidated. The present work aimed to evaluate the effects of four weeks of streptozootocin-induced (STZ) diabetes in the redox homeostasis of rat hepatocytes. Thus, the liver of male Wistar rats from control and diabetic groups were collected and the activity and expression of antioxidant enzymes, as well the main markers of oxidative stress and content of H2O2 in these tissues were measured. The diabetes induced the activity of superoxide dismutase (SOD) and the gene expression of its mitochondrial isoform, SOD2. However, the expression of SOD1, the cytoplasmic isoform, was reduced by this disease. The activity and expression of catalase (CAT), as well the expression of glutathione peroxidase 1 (GPX1) and peroxiredoxin 4 (PRX4) were drastically reduced in the hepatocytes of diabetics rats. Even with this debility in the peroxidases mRNA expression, the content of H2O2 was reduced in the liver of diabetics rats when compared to the control group. The diabetes caused an increase of lipid peroxidation and a decrease of protein thiol content, showing that this disease causes distinct oxidative effects in different cell biomolecules. Our results indicate that four week of diabetes induced by STZ is already enough to compromise the enzymatic antioxidant systems of the hepatocytes.
Resumo:
Photodynamic therapy (PDT) consists of a non-toxic photosensitizing agent (FS) administration followed by a laser source resulting in a sequence of photochemical and photobiological processes that generate reactive oxygen species (ROS) that damaging cells. The present work evaluated the effects of PDT nanoemulsion-aluminum chloride phthalocyanine (AlClFc) mediated on malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels, which represent indicators involved in oxidative stress and antioxidant defenses. For this purpose, this study used 120 female rats of the Rattus norvegicus species, Wistar race, divided into 5 groups: Healthy (H), with periodontal disease (PD), with periodontal disease and treatment with FS (F), with periodontal disease and treatment with the laser (L); and periodontal disease and treatment with PDT (FL). An experimental model for represent periodontal disease (PD) was induced by ligature (split-mouth). Seven days later the induction of PD, the treatments were instituted according to the groups. In the group treated with PDT was applied 40μl FS (5μM) followed by laser irradiation diode InGaAlP (660nm, 100J / cm2). The rats were sacrificed on the 7th and 28th day after treatment and tissue specimens were removed and subjected to histological, immunohistochemical methods and enzymatic colorimetric measurements with detection by UV / VIS spectroscopy. Inflammatory changes, connective tissue disorganization and alveolar bone loss were displaying in groups with PD induced. The enzyme dosages showed that MDA levels were higher in PD induced groups, with no statistically significant differences (p> 0.05). High levels of GSH were found in groups L (p = 0.028) and FL (p = 0.028) compared with PD group, with statistically significant differences. Immunohistochemistry for SOD showed higher immunostaining in L and FL groups, compared to the PD group without statistically significant differences (p> 0.05). GPx showed lower immunoreactivity in the DP group when compared to the other groups and statistically significant differences were observed between the DPxL groups (p <0.05). TFD administered in this experiment did not induce elevation of MDA levels significantly increased the GSH levels and showed intense immunostaining pada SOD and GPx, showing that this therapy does not accentuated lipid peroxidation, however, it was able to induce effects on the antioxidant defenses processes. The LBI therapy appeared to show photomodulatory promoting effects reduction of the MDA levels, increasing GSH levels and with intense immunostaining for SOD and GPx, demonstrating that laser therapy induced antioxidant effects.
Resumo:
OBJECTIVE: The aim of this work was to analyse some oxidative stress parameters in patients of Systemic Lúpus Erythematosus. PATIENTS AND METHODS: Determinations of reduced glutathione content in whole blood were carried out. The activity of superoxide dismutase, gluthatione peroxidase and catalase in erythrocytes and the concentration of reactive substances of acid thiobarbituric in plasma of patients female (n =19) with SLE no activity of disease (Mex-SLEDAI < 2), with average ages of 32 ± 11 years, through the spectrophotometrical methods and from healthy individuals (n =30). Statistical data were analyzed by student t-test, p<0,05. RESULTS: Our data indicated a significant decrease on the activity of catalase and significant increase on the concentration of reactive substances of acid thiobarbituric in patients with SLE comparing with healthy individuals. There was no significant difference in other parameters. CONCLUSION: The results showed that oxidative stress has a role in the pathogenesis of the disease in SLE, even in patients without active disease.
Resumo:
World consumption of vegetable oils has increased in recent years because of its application in food, chemical, pharmaceutical and, more recently, energy industry. However, oilseeds, which these oils are extracted, have low viability, affecting the cultivation and productivity of these species. The aim of this study was to analyze the effect of aging on the coordination of catalase (CAT) and ascorbate peroxidase (APX) antioxidant systems in safflower and sunflower. . Therefore, seeds were subjected to accelerated aging for 3, 6 and 9 days and grown in moistened paper towel for 72 hours. Additionally, before accelerated aging, sunflower seeds were pretreated by osmopriming with 10 mM ascorbate (ASC) or 3 amino 1,2,4 triazol (3-AT), a specific inhibitor of CAT activitie. The method of artificial aging used was efficient in both species, because it caused a decrease in germination, seedling development and growth, especially in safflower. The aging caused inhibition of CAT activity for both species and to compensate for such inhibition , sunflower increased mRNA expression of this enzyme , while safflower mobilized over the activity of APX. Analysis of the expression of malate synthase and sugar content demonstrated that sunflower seeds consumes lipid reserves in quiescent state, while the safflower is more dependent on carbohydrate. Pretreatment with 3-AT inhibited CAT activity and stimulated the APX, though with ASC acted reverse on these systems. None of the treatments recovered the physiological decline aging. It is concluded that aging change the oilseeds antioxidant metabolism, despite interspecies variations in response to this process, the depletion of the CAT antioxidant system was common. Because of this we propose that the measurement of CAT activity can be used to identify aging seed lots.